Spatio-temporal rainfall variability of equatorial small island: case study Bintan Island, Indonesia

2021 ◽  
Vol 144 (1-2) ◽  
pp. 625-641
Author(s):  
Ida Narulita ◽  
Faiz R. Fajary ◽  
M. Ridho Syahputra ◽  
Eko Kusratmoko ◽  
M. R. Djuwansah
2014 ◽  
Vol 71 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Petr Sýkora ◽  
David Stránský ◽  
Vojtěch Bareš

Commercial microwave links (MWLs) were suggested about a decade ago as a new source for quantitative precipitation estimates (QPEs). Meanwhile, the theory is well understood and rainfall monitoring with MWLs is on its way to being a mature technology, with several well-documented case studies, which investigate QPEs from multiple MWLs on the mesoscale. However, the potential of MWLs to observe microscale rainfall variability, which is important for urban hydrology, has not been investigated yet. In this paper, we assess the potential of MWLs to capture the spatio-temporal rainfall dynamics over small catchments of a few square kilometres. Specifically, we investigate the influence of different MWL topologies on areal rainfall estimation, which is important for experimental design or to a priori check the feasibility of using MWLs. In a dedicated case study in Prague, Czech Republic, we collected a unique dataset of 14 MWL signals with a temporal resolution of a few seconds and compared the QPEs from the MWLs to reference rainfall from multiple rain gauges. Our results show that, although QPEs from most MWLs are probably positively biased, they capture spatio-temporal rainfall variability on the microscale very well. Thus, they have great potential to improve runoff predictions. This is especially beneficial for heavy rainfall, which is usually decisive for urban drainage design.


2020 ◽  
Vol 34 (9) ◽  
pp. 1289-1311 ◽  
Author(s):  
N. Naranjo-Fernández ◽  
C. Guardiola-Albert ◽  
H. Aguilera ◽  
C. Serrano-Hidalgo ◽  
M. Rodríguez-Rodríguez ◽  
...  

2013 ◽  
Vol 68 (8) ◽  
pp. 1810-1818 ◽  
Author(s):  
M. Fencl ◽  
J. Rieckermann ◽  
M. Schleiss ◽  
D. Stránský ◽  
V. Bareš

The ability to predict the runoff response of an urban catchment to rainfall is crucial for managing drainage systems effectively and controlling discharges from urban areas. In this paper we assess the potential of commercial microwave links (MWL) to capture the spatio-temporal rainfall dynamics and thus improve urban rainfall-runoff modelling. Specifically, we perform numerical experiments with virtual rainfall fields and compare the results of MWL rainfall reconstructions to those of rain gauge (RG) observations. In a case study, we are able to show that MWL networks in urban areas are sufficiently dense to provide good information on spatio-temporal rainfall variability and can thus considerably improve pipe flow prediction, even in small subcatchments. In addition, the better spatial coverage also improves the control of discharges from urban areas. This is especially beneficial for heavy rainfall, which usually has a high spatial variability that cannot be accurately captured by RG point measurements.


2019 ◽  
Vol 28 (7) ◽  
pp. 1863-1883 ◽  
Author(s):  
Agustín Molina Sánchez ◽  
Patricia Delgado ◽  
Antonio González-Rodríguez ◽  
Clementina González ◽  
A. Francisco Gómez-Tagle Rojas ◽  
...  

Author(s):  
Álvaro Briz-Redón ◽  
Adina Iftimi ◽  
Juan Francisco Correcher ◽  
Jose De Andrés ◽  
Manuel Lozano ◽  
...  

GeoJournal ◽  
2021 ◽  
Author(s):  
R. Nasiri ◽  
S. Akbarpour ◽  
AR. Zali ◽  
N. Khodakarami ◽  
MH. Boochani ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Lennart Adenaw ◽  
Markus Lienkamp

In order to electrify the transport sector, scores of charging stations are needed to incentivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.


2021 ◽  
pp. 1-16
Author(s):  
CAN ZHOU ◽  
NIGEL BROTHERS

Summary The incidental mortality of seabirds in fisheries remains a serious global concern. Obtaining unbiased and accurate estimates of bycatch rates is a priority for seabird bycatch mitigation and demographic research. For measuring the capture risk of seabird interactions in fisheries, the rate of carcass retrieval from hauled gear is commonly used. However, reliability can be limited by a lack of direct capture observations and the substantial pre-haul bycatch losses known to occur, meaning incidence of seabird bycatch is underestimated. To solve this problem, a new measure (bycatch vulnerability) that links an observed interaction directly to the underlying capture event is proposed to represent the capture risk of fishery interactions by seabirds. The new measure is not affected by subsequent bycatch loss. To illustrate how to estimate and analyse bycatch vulnerability, a case study based on a long-term dataset of seabird interactions and capture confirmation is provided. Bayesian modelling and hypothesis testing were conducted to identify important bycatch risk factors. Competition was found to play a central role in determining seabird bycatch vulnerability. More competitive environments were riskier for seabirds, and larger and thus more competitive species were more at risk than smaller sized and less competitive species. Species foraging behaviour also played a role. On the other hand, no additional effect of physical oceanic condition and spatio-temporal factors on bycatch vulnerability was detected. Bycatch vulnerability is recommended as a replacement for the commonly used bycatch rate or carcass retrieval rate to measure the capture risk of an interaction. Combined with a normalized contact rate, bycatch vulnerability offers an unbiased estimate of seabird bycatch rate in pelagic longline fisheries.


Sign in / Sign up

Export Citation Format

Share Document