Productive infection of the bone marrow cells in feline immunodeficiency virus infected cats

2002 ◽  
Vol 147 (5) ◽  
pp. 1053-1059 ◽  
Author(s):  
J. R. Sandy ◽  
W. F. Robinson ◽  
B. Bredhauer ◽  
M. Kyaw-Tanner ◽  
C. R. Howlett
Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 384-391 ◽  
Author(s):  
K Ozawa ◽  
G Kurtzman ◽  
N Young

Abstract B19 parvovirus, the cause of fifth disease and transient aplastic crisis, has been successfully propagated in suspension cultures of human erythroid bone marrow cells obtained from patients with sickle cell disease and stimulated by erythropoietin. B19 inoculation in vitro resulted in a marked decline in identifiable erythroid cells over seven to nine days of incubation. Characteristic giant early erythroid cells were seen on Wright's-Giemsa stain of infected cultures. By in situ hybridization, 30% to 40% of erythroblasts were infected at 48 hours; a similar proportion of cells showed B19 capsid protein by immunofluorescence. B19 DNA was present in erythroblasts but not in the leukocyte fraction of bone marrow. B19 replication, as determined by Southern analysis, and B19 encapsidation, as determined by sensitivity of isolated cell fractions to DNase I, were restricted to the nuclei. B19 DNA was detectable in the nuclei from infected cultures beginning at 18 hours and in the supernatant at 32 hours; B19 genome copy number was estimated at about 25,000 to 30,000/infected cell at 48 hours. Recovery of virus depended on the multiplicity of infection (moi); at low moi, approximately 200x input virus was recovered from total cultures and 50x from the culture supernatants. Virus released into the supernatant was as infectious or more infectious than virus obtained from sera of infected patients. Human erythroid bone marrow culture represents a safe in vitro system for the elucidation of the cellular and molecular biology of the pathogenic B19 parvovirus.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2476-2482 ◽  
Author(s):  
JM Molina ◽  
DT Scadden ◽  
M Sakaguchi ◽  
B Fuller ◽  
A Woon ◽  
...  

The pathogenesis of the hematologic abnormalities commonly observed in patients with acquired immunodeficiency syndrome (AIDS) is incompletely understood. We report here that in vitro growth of myeloid (CFU-GM) and erythroid (BFU-E) progenitor cells from six patients with AIDS was not significantly different from that of normal human immunodeficiency virus (HIV) seronegative donors: 25.3 +/- 5 CFU-GM per 5 x 10(4) low density marrow cells and 33.5 +/- 5 BFU-E were observed in AIDS patients versus 32.7 +/- 5 CFU-GM and 42.1 +/- 5 BFU-E in controls. Furthermore, no HIV-DNA in individual colonies (CFU-GM and BFU-E) could be detected using the polymerase chain reaction (PCR) technique, although HIV-1 DNA was detected in peripheral blood mononuclear cells from the same patients. Similarly, normal bone marrow cells exposed in vitro to different isolates of HIV or recombinant purified HIV-1 envelope glycoprotein (gp) 120 did not exhibit any difference in growth of CFU-GM or BFU-E as compared with mock exposed bone marrow cells. HIV- 1 DNA could not be detected by the PCR technique in individual colonies derived from HIV exposed marrow. This study suggests that committed myeloid and erythroid progenitors from AIDS patients are responsive to hematopoietic growth factors in vitro and do not appear to contain HIV- 1 DNA. Also, HIV or its envelope gp did not alter the growth of hematopoietic progenitor cells in vitro. No evidence of HIV infection of progenitor cells could be demonstrated. Impaired hematopoiesis in patients with AIDS may not be related to direct effects of HIV on committed progenitor cells.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1353-1360 ◽  
Author(s):  
A Dolzhanskiy ◽  
RS Basch ◽  
S Karpatkin

CD34 is expressed by essentially all human hematopoietic progenitors including cells of the megakaryocyte (MK) lineage. We have previously reported CD4 expression by some human MK (Blood 81:2,664, 1993). To study the role of maturation on CD4 expression by MK, we examined CD34+ bone marrow cells for their expression of CD41 (GPIIb-GPIIIa) and CD4 with specific monoclonal antibody (MoAb)-fluorochrome conjugates and for DNA polyploidization with propidium iodide or 7-aminoactinomycin D (7-AAD). Surprisingly, MK were at least 20-fold more common in the CD34+ progenitor pool (approximately 10%) than in the more mature CD34+ population (approximately 0.5%) of low density bone marrow cells. CD4 expression correlated with markers of immaturity in that CD4 was enriched among CD34+ cells, and the proportion of CD4+ MK declined with increasing ploidy. Almost all CD34+ polyploid ( > or = 8N) cells were CD4+. Despite these correlations with immaturity, CD34+CD4+ MK precursors were unable to produce MK colony-forming units (CFU-MK) when cultured under conditions that supported the growth of CFU-MK from CD34+CD4- MK lineage cells. MK became polyploid before the loss of either CD34 or CD4 expression. The presence of CD4 on these cells correlates with the onset of endomitotic reduplication and is associated with the loss of the ability of these cells to undergo normal mitotic division. The role of CD4 on immature MK as a differentiation antigen and/or receptor for the human immunodeficiency virus (HIV)-1 virus remains to be determined.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 384-391 ◽  
Author(s):  
K Ozawa ◽  
G Kurtzman ◽  
N Young

B19 parvovirus, the cause of fifth disease and transient aplastic crisis, has been successfully propagated in suspension cultures of human erythroid bone marrow cells obtained from patients with sickle cell disease and stimulated by erythropoietin. B19 inoculation in vitro resulted in a marked decline in identifiable erythroid cells over seven to nine days of incubation. Characteristic giant early erythroid cells were seen on Wright's-Giemsa stain of infected cultures. By in situ hybridization, 30% to 40% of erythroblasts were infected at 48 hours; a similar proportion of cells showed B19 capsid protein by immunofluorescence. B19 DNA was present in erythroblasts but not in the leukocyte fraction of bone marrow. B19 replication, as determined by Southern analysis, and B19 encapsidation, as determined by sensitivity of isolated cell fractions to DNase I, were restricted to the nuclei. B19 DNA was detectable in the nuclei from infected cultures beginning at 18 hours and in the supernatant at 32 hours; B19 genome copy number was estimated at about 25,000 to 30,000/infected cell at 48 hours. Recovery of virus depended on the multiplicity of infection (moi); at low moi, approximately 200x input virus was recovered from total cultures and 50x from the culture supernatants. Virus released into the supernatant was as infectious or more infectious than virus obtained from sera of infected patients. Human erythroid bone marrow culture represents a safe in vitro system for the elucidation of the cellular and molecular biology of the pathogenic B19 parvovirus.


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2476-2482 ◽  
Author(s):  
JM Molina ◽  
DT Scadden ◽  
M Sakaguchi ◽  
B Fuller ◽  
A Woon ◽  
...  

Abstract The pathogenesis of the hematologic abnormalities commonly observed in patients with acquired immunodeficiency syndrome (AIDS) is incompletely understood. We report here that in vitro growth of myeloid (CFU-GM) and erythroid (BFU-E) progenitor cells from six patients with AIDS was not significantly different from that of normal human immunodeficiency virus (HIV) seronegative donors: 25.3 +/- 5 CFU-GM per 5 x 10(4) low density marrow cells and 33.5 +/- 5 BFU-E were observed in AIDS patients versus 32.7 +/- 5 CFU-GM and 42.1 +/- 5 BFU-E in controls. Furthermore, no HIV-DNA in individual colonies (CFU-GM and BFU-E) could be detected using the polymerase chain reaction (PCR) technique, although HIV-1 DNA was detected in peripheral blood mononuclear cells from the same patients. Similarly, normal bone marrow cells exposed in vitro to different isolates of HIV or recombinant purified HIV-1 envelope glycoprotein (gp) 120 did not exhibit any difference in growth of CFU-GM or BFU-E as compared with mock exposed bone marrow cells. HIV- 1 DNA could not be detected by the PCR technique in individual colonies derived from HIV exposed marrow. This study suggests that committed myeloid and erythroid progenitors from AIDS patients are responsive to hematopoietic growth factors in vitro and do not appear to contain HIV- 1 DNA. Also, HIV or its envelope gp did not alter the growth of hematopoietic progenitor cells in vitro. No evidence of HIV infection of progenitor cells could be demonstrated. Impaired hematopoiesis in patients with AIDS may not be related to direct effects of HIV on committed progenitor cells.


2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
C Stamm ◽  
YH Choi ◽  
A Liebold ◽  
HD Kleine ◽  
S Dunkelmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document