mitotic division
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 45)

H-INDEX

36
(FIVE YEARS 5)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
E. Dubas ◽  
A. M. Castillo ◽  
I. Żur ◽  
M. Krzewska ◽  
M. P. Vallés

Abstract Background A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. Results In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. Conclusions Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.


2021 ◽  
Author(s):  
Dandan Yang ◽  
Yue Liu ◽  
Muhammad Ali ◽  
Lei Ye ◽  
Changtian Pan ◽  
...  

Caryologia ◽  
2021 ◽  
Author(s):  
Dr/ Shaimaa Selmi Sobieh

Galium sinaicum is a wild medicinal plant in saint Catherine, Egypt. To distinguish apoptotic effect of G. sinaicum ethanol extract (GsEE), we examined the role of GsEE in inducing programmed cell death (PCD) of Allium cepa root meristematic cell (AcR). Cells was subjected to GsEE in definite concentrations (0.1,0.3, 0.5%) and duration (6, 12h), then PCD induction was assessed. Application of GsEE arrested the mitotic division of AcR with metaphase accumulation. Electron microscopy analysis demonstrated ultrastructural alterations of organelles verifying PCD hallmarks. Protein electrophoresis analysis of AcR revealed a change in protein profile of Allium cepa root, also quantitative analysis showed significant increase in nuclease activity enzymes that stimulated DNA laddering fragmentation. Additionally, cell proliferation of MCF-7 and BHK21 was arrested by GsEE. Apoptotic effect of G. sinaicum may be attributed to the presence of potent phenolic compounds such as querectin and rutin as established by HPLC phenolic fingerprint analysis.


Author(s):  
Saara Hämälistö ◽  
Jonathan Stahl-Meyer ◽  
Marja Jäättelä

The division of one cell into two looks so easy, as if it happens without any control at all. Mitosis, the hallmark of mammalian life is, however, tightly regulated from the early onset to the very last phase. Despite the tight control, errors in mitotic division occur frequently and they may result in various chromosomal instabilities and malignancies. The flow of events during mitotic progression where the chromosomes condensate and rearrange with the help of the cytoskeletal network has been described in great detail. Plasma membrane dynamics and endocytic vesicle movement upon deadhesion and reattachment of dividing cells are also demonstrated to be functionally important for the mitotic integrity. Other cytoplasmic organelles, such as autophagosomes and lysosomes, have until recently been considered merely as passive bystanders in this process. Accordingly, at the onset of nuclear envelope breakdown in prometaphase, the number of autophagic structures and lysosomes is reduced and the bulk autophagic machinery is suppressed for the duration of mitosis. This is believed to ensure that the exposed nuclear components are not unintentionally delivered to autophagic degradation. With the evolving technologies that allow the detection of subtle alterations in cytoplasmic organelles, our understanding of the small-scale regulation of intracellular organelles has deepened rapidly and we discuss here recent discoveries revealing unexpected roles for autophagy and lysosomes in the preservation of genomic integrity during mitosis.


2021 ◽  
Vol 9 (8) ◽  
pp. 1579
Author(s):  
Man You ◽  
Yuxin Monica Lin ◽  
Annamaria Dobrin ◽  
Jianping Xu

To better understand the potential factors contributing to genome instability and phenotypic diversity, we conducted mutation accumulation (MA) experiments for 120 days for 7 diploid cryptococcal hybrids under fluconazole (10 MA lines each) and non-fluconazole conditions (10 MA lines each). The genomic DNA content, loss of heterozygosity (LOH) rate, growth ability, and fluconazole susceptibility were determined for all 140 evolved cultures. Compared to that of their ancestral clones, the evolved clones showed: (i) genomic DNA content changes ranging from ~22% less to ~27% more, and (ii) reduced, similar, and increased phenotypic values for each tested trait, with most evolved clones displaying increased growth at 40 °C and increased fluconazole resistance. Aside from the ancestral multi-locus genotypes (MLGs) and heterozygosity patterns (MHPs), 77 unique MLGs and 70 unique MPHs were identified among the 140 evolved cultures at day 120. The average LOH rates of the MA lines in the absence and presence of fluconazole were similar at 1.27 × 10−4 and 1.38 × 10−4 LOH events per MA line per mitotic division, respectively. While LOH rates varied among MA lines from different ancestors, there was no apparent correlation between the genetic divergence of the parental haploid genomes within ancestral clones and LOH rates. Together, our results suggest that hybrids between diverse lineages of the human pathogenic Cryptococcus can generate significant genotypic and phenotypic diversities during asexual reproduction.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
N. H. AlShamrani

AbstractIn the literature, several mathematical models have been formulated and developed to describe the within-host dynamics of either human immunodeficiency virus (HIV) or human T-lymphotropic virus type I (HTLV-I) monoinfections. In this paper, we formulate and analyze a novel within-host dynamics model of HTLV-HIV coinfection taking into consideration the response of cytotoxic T lymphocytes (CTLs). The uninfected $\mathrm{CD} 4^{+}\mathrm{T}$ CD 4 + T cells can be infected via HIV by two mechanisms, free-to-cell and infected-to-cell. On the other hand, the HTLV-I has two modes for transmission, (i) horizontal, via direct infected-to-cell touch, and (ii) vertical, by mitotic division of active HTLV-infected cells. It is well known that the intracellular time delays play an important role in within-host virus dynamics. In this work, we consider six types of distributed-time delays. We investigate the fundamental properties of solutions. Then, we calculate the steady states of the model in terms of threshold parameters. Moreover, we study the global stability of the steady states by using the Lyapunov method. We conduct numerical simulations to illustrate and support our theoretical results. In addition, we discuss the effect of multiple time delays on stability of the steady states of the system.


2021 ◽  
Vol 22 (9) ◽  
pp. 4974
Author(s):  
Thu-Huyen Pham ◽  
Hyo-Min Park ◽  
Jinju Kim ◽  
Jin-Tae Hong ◽  
Do-Young Yoon

The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects cancer cell growth and evaluated the responses of IL-32θ-expressing cells to other cancer therapy. We compared the functions of IL-32θ in triple-negative breast cancer MDA-MB-231 cells that stably express IL-32θ, with MDA-MB-231 cells transfected with a mock vector. Slower growth was observed in cells expressing IL-32θ than in control cells, and changes were noted in nuclear morphology, mitotic division, and nucleolar size between the two groups of cells. Interleukin-32θ significantly reduced the colony-forming ability of MDA-MB-231 cells and induced permanent cell cycle arrest at the G1 phase. Long-term IL-32θ accumulation triggered permanent senescence and chromosomal instability in MDA-MB-231 cells. Genotoxic drug doxorubicin (DR) reduced the viability of MDA-MB-231 cells not expressing IL-32θ more than in cells expressing IL-32θ. Overall, these findings suggest that IL-32θ exerts antiproliferative effects in breast cancer cells and initiates senescence, which may cause DR resistance. Therefore, targeting IL-32θ in combination with DR treatment may not be suitable for treating metastatic breast cancer.


2021 ◽  
Author(s):  
Tatiana G. Zybina

The placental trophoblast cells give an example of profound genome modifications that lead to whole-genome multiplication, aneuploidy, under-replication of some genes or their clusters as well as, by contrast, gene amplification. These events are included into program of differentiation of functionally different cell lineages. In some cases the trophoblast cell differentiation involves depolyploidization achieved by non-mitotic division. Aneuploidy may be also accounted for by the unusual mitoses characteristic of Invertebrates and plants; in mammalian it may result from hypomethylation of centromere chromosome regions. The giant (endopolyploid) trophoblast cells organization includes “loose nucleosomes” accounted for by the non-canonical histone variants, i.e. H2AX, H2AZ, and H3. 3 . In the human extravillous trophoblast cells that, like murine TGC, invade endometrium, there occured significant changes of methylation as compared to non-invasive trophoblast cell populations . Meantime, some genes show hypermethylation connected with start of trophoblast lineages specification. Thus, despite the limited possibilities of chromosome visualization trophoblast cells represent an interesting model to investigate the role of modification of gene copy number and their expression that is important for the normal or abnormal cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document