A comparison of the continuous and discrete adjoint approach extended based on the standard lattice Boltzmann method in flow field inverse optimization problems

2015 ◽  
Vol 227 (4) ◽  
pp. 1025-1050 ◽  
Author(s):  
Mohamad Hamed Hekmat ◽  
Masoud Mirzaei
2020 ◽  
Vol 14 (20) ◽  
pp. 4539-4546
Author(s):  
Ting Zhu ◽  
Song Wang ◽  
Naming Zhang ◽  
Shuhong Wang ◽  
Shuya Ning

2017 ◽  
Vol 2017.23 (0) ◽  
pp. 114
Author(s):  
Daichi Yamamoto ◽  
Hiroya Mamori ◽  
Naoya Fukushima ◽  
Makoto Yamamoto ◽  
Ryo Kagaya ◽  
...  

2020 ◽  
pp. 96-96
Author(s):  
Abchouyeh Asadi ◽  
Ganaoui El ◽  
Rasul Mohebbi ◽  
Mohammad Zarrabi ◽  
Omid Fard ◽  
...  

In this study, the Lattice Boltzmann Method (LBM) is employed in order to examine the fluid flow and forced convection heat transfer inside a two-dimensional horizontal channel with and without obstacles. In order to enhance the heat and thermal energy transfer within the channel, different obstacle arrangements are posed to the flow field and heat transfer with the purpose of studying their sensitivity to these changes. The results indicate that, when the value of the Reynolds number is maximum, the maximum average Nusselt numbers happens on the lower wall (Case 4). The paper extends the topic to the use of nanofluids to introduce a possibility to enhancement of the heat transfer in the channel with an array of the obstacles with forced convection. For this purpose, the AgMgO/water micropolar hybrid nanofluid is used, and the volume fraction of the nanoparticle (50% Ag and 50% MgO by volume) is set between 0 and 0.02. The results showed that, when the hybrid nanofluid is used instead of a typical nanofluid, the rate of the heat transfer inside the channel increases, especially for the high values of the Reynolds number, and the volume fraction of the nanoparticles. Increasing the volume fraction of the nanoparticles increase the local Nusselt number ( 1.17-fold). It is shown that the type of obstacle arrangement and the specific nanofluid can exerts significant effects on the characteristics of the flow field and heat transfer in the channel. This study provides a platform for using the LBM to examine fluid flow through discrete obstacles in offset positions.


Author(s):  
K. Suga ◽  
S. Takenaka ◽  
T. Ito ◽  
M. Kaneda ◽  
T. Kinjo ◽  
...  

In order to simulate heat and mass transfer in porous media whose scales range micron to nanometers, this work intends to provide a scheme for flow field simulation for such porous media. Since Navier-Stokes equations are no longer applicable to high Knudsen number (Kn) flow regimes, the conventional lattice Boltzmann method (LBM) cannot be applicable to flows in nanoscale porous media. Hence, a modified lattice Boltzmann method is applied for computing flows in micro-nano porous media in the transitional flow regimes at moderately high Knudsen numbers. The lattice Boltzmann equation applied is an extended version using an effective relaxation time associated with Kn and a regularization procedure coupled with Maxwell’s diffuse-scattering boundary condition for walls. For the flow field where the representative molecular mean free path varies (effectively the Kn varies locally), the locally defined Kn is introduced. In order to verify the LBM scheme, the results are compared with those of the molecular dynamics (MD) simulations by the Leonard-Jones potential. The flow fields considered are in modeled nano-porous media whose porosity is around 0.9. The results of micro-nanoscale porous media flows at Knudsen numbers: Kn = 0.04–0.24 show reasonable agreement in both the simulation methods and confirm the reliability of the presently applied LBM. Interestingly, in complex flow geometry, the advantage of higher order discrete velocity models of the LBM is not notable. Therefore, it is concluded that conventional discrete velocity models, say the D2Q9 and D3Q19 models are reasonably enough for flows in micro-nanoscale porous media.


Sign in / Sign up

Export Citation Format

Share Document