First-principles study of structure, electronic, and magnetic properties of C sites vacancy defects in water adsorbed graphene/MoS2 van der Waals heterostructures

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Hari Krishna Neupane ◽  
Narayan Prasad Adhikari
Author(s):  
Hari Krishna Neupane ◽  
Narayan Prasad Adhikari

In this work, we investigated the geometrical structures, electronic and magnetic properties of S sites vacancy defects in heterostructure graphene/molybdenum disulphide ((HS)G/MoS[Formula: see text] material by performing first-principles calculations based on spin polarized Density Functional Theory (DFT) method within van der Waals (vdW) corrections (DFT-D2) approach. All the structures are optimized and relaxed by BFGS method using computational tool Quantum ESPRESSO (QE) package. We found that both (HS)G/MoS2 and S sites vacancy defects in (HS)G/MoS2 (D1S–(HS)G/MoS2, U1S–(HS)G/MoS2, 2S–(HS)G/MoS2 and 3S–(HS)G/MoS[Formula: see text] are stable materials, and atoms in defects structures are more compact than in pristine (HS)G/MoS2 structure. From band structure calculations, we found that (HS)G/MoS2, (D1S–(HS)G/MoS2, U1S–(HS)G/MoS2, 2S–(HS)G/MoS2 and 3S–(HS)G/MoS[Formula: see text] materials have [Formula: see text]-type Schottky contact. The Dirac cone is formed in conduction band of the materials mentioned above. The barrier height of Dirac cones from Fermi energy level of (HS)G/MoS2, (D1S–(HS)G/MoS2, U1S–(HS)G/MoS2, 2S–(HS)G/MoS2 and 3S–(HS)G/MoS[Formula: see text] materials have values 0.56[Formula: see text]eV, 0.62[Formula: see text]eV, 0.62[Formula: see text]eV, 0.64[Formula: see text]eV and 0.65[Formula: see text]eV, respectively, which means they have metallic properties. To study the magnetic properties of materials, we have carried out DoS and PDoS calculations. We found that (HS)G/MoS2, D1S–(HS)G/MoS2 and U1S–(HS)G/MoS2 materials have non-magnetic properties, and 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials have magnetic properties. Therefore, the non-magnetic (HS)G/MoS2 changes to magnetic 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials due to 2S and 3S atoms vacancy defects, respectively, in (HS)G/MoS2 material. Magnetic moment obtained in 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials due to the unequal distribution of up and down spin states of electrons in 2s and 2p orbitals of C atoms; 4p, 4d and 5s orbitals of Mo atoms; and 3s and 3p orbitals of S atoms in structures. Magnetic moment of 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials is −0.11[Formula: see text][Formula: see text]/cell and [Formula: see text]/cell, respectively, and spins of 2p orbital of C atoms, 3p orbital of S atoms and 4d orbital of Mo atoms have dominant role to create magnetism in 2S–(HS)G/MoS2 and 3S–(HS)G/MoS2 materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hari Krishna Neupane ◽  
Narayan Prasad Adhikari

In this work, we systematically studied the structure, and electronic and magnetic properties of van der Waals (vdWs) interface Graphene/MoS2 heterostructure (HS-G/MoS2) and C sites vacancy defects in HS-G/MoS2 materials using first-principles calculations. By the structural analysis, we found that nondefects geometry is more compact than defects geometries. To investigate the electronic and magnetic properties of HS-G/MoS2 and C sites vacancy defects in HS-G/MoS2 materials, we have studied band structure, density of states (DOS), and partial density of states (PDOS). By analyzing the results, we found that HS-G/MoS2 is metallic in nature but C sites vacancy defects in HS-G/MoS2 materials have a certain energy bandgap. Also, from the band structure calculations, we found that Fermi energy level shifted towards the conduction band in vacancy defects geometries which reveals that the defected heterostructure is n-type Schottky contacts. From DOS and PDOS analysis, we obtained that the nonmagnetic HS-G/MoS2 material changes to magnetic materials due to the presence of C sites vacancy defects. Right 1C atom vacancy defects (R-1C), left 1C atom vacancy defects (L-1C), centre 1C atom vacancy defects (C-1C), and 2C (1C right and 1C centre) atom vacancy defects in HS-G/MoS2 materials have magnetic moments of −0.75 µB/cell, −0.75 µB/cell, −0.12 µB/cell, and +0.39 µB/cell, respectively. Electrons from 2s and 2p orbitals of C atoms have main contributions for the magnetism in all these materials.


2011 ◽  
Vol 109 (9) ◽  
pp. 094304 ◽  
Author(s):  
Chang-wen Zhang ◽  
Shi-shen Yan ◽  
Pei-ji Wang ◽  
Ping Li ◽  
Fu-bao Zheng

Carbon ◽  
2014 ◽  
Vol 71 ◽  
pp. 150-158 ◽  
Author(s):  
Sheng-Ying Yue ◽  
Qing-Bo Yan ◽  
Zhen-Gang Zhu ◽  
Hui-Juan Cui ◽  
Qing-Rong Zheng ◽  
...  

2020 ◽  
Vol 815 ◽  
pp. 152449 ◽  
Author(s):  
Ghasem Forozani ◽  
Ahmad Asadi Mohammad Abadi ◽  
Seyyed Mahdy Baizaee ◽  
Abdolrasoul Gharaati

Sign in / Sign up

Export Citation Format

Share Document