twisted graphene
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 45)

H-INDEX

26
(FIVE YEARS 8)

2D Materials ◽  
2022 ◽  
Author(s):  
Guangze Chen ◽  
Maryam Khosravian ◽  
Jose Lado ◽  
Aline Ramires

Abstract Twisted graphene multilayers provide tunable platforms to engineer flat bands and exploit the associated strongly correlated physics. The two-dimensional nature of these systems makes them suitable for encapsulation by materials that break specific symmetries. In this context, recently discovered two-dimensional helimagnets, such as the multiferroic monolayer NiI2, are specially appealing for breaking time-reversal and inversion symmetries due to their nontrivial spin textures. Here we show that this spin texture can be imprinted on the electronic structure of twisted bilayer graphene by proximity effect. We discuss the dependence of the imprinted spin texture on the wave-vector of the helical structure, and on the strength of the effective local exchange field. Based on these results we discuss the nature of the superconducting instabilities that can take place in helimagnet encapsulated twisted bilayer graphene. Our results put forward helimagnetic encapsulation as a powerful way of designing spin-textured flat band systems, providing a starting point to engineer a new family of correlated moire states.


2021 ◽  
Author(s):  
Yao Yao ◽  
Ryota Negishi ◽  
Daisuke Takajo ◽  
Makoto Takamura ◽  
Yoshitaka Taniyasu ◽  
...  

Abstract Overlayer growth of graphene on an epitaxial graphene/silicon carbide (SiC) as a solid template by ethanol chemical vapor deposition is performed over a wide growth temperature range from 900 ºC to 1450 ºC. Structural analysis using atomic force and scanning tunneling microscopies reveal that graphene islands grown at 1300 ºC form hexagonal twisted bilayer graphene as a single crystal. When the growth temperature exceeds 1400 ºC, the grown graphene islands show a circular shape. Moreover, moiré patterns with different periods are observed in a single graphene island. This means that the graphene islands grown at high temperature are composed of several graphene domains with different twist angles. From these results, we conclude that graphene overlayer growth on the epitaxial graphene/SiC solid at 1300 ºC effectively synthesizes the twisted few-layer graphene with a high crystallinity.


Author(s):  
Yiheng Chen ◽  
Wen-Ti Guo ◽  
Zi-si Chen ◽  
Suyun Wang ◽  
Jian-Min Zhang

Abstract In recent years, the discovery of "magic angle" graphene has given new inspiration to the formation of heterojunctions. Similarly, the use of hexagonal boron nitride, known as white graphene, as a substrate for graphene devices has more aroused great interest in the graphene/hexagonal boron nitride (G/hBN) heterostructure system. Based on the first principles method of density functional theory, the band structure, density of states, Mulliken population, and differential charge density of a tightly packed model of twisted graphene/hexagonal boron nitride/graphene (G/hBN/G) sandwich structure have been studied. Through the establishment of heterostructure models TBG inserting hBN with different twisted angles, it was found that the band gap, Mulliken population, and charge density, exhibited specific evolution regulars with the rotation angle of the upper graphene, showing novel electronic properties and realizing metal-insulator phase transition. We find that the particular value of the twist angle at which the metal-insulator phase transition occurs and propose a rotational regulation mechanism with angular periodicity. Our results have guiding significance for the practical application of heterojunction electronic devices.


2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Florie Mesple ◽  
Ahmed Missaoui ◽  
Tommaso Cea ◽  
Loic Huder ◽  
Francisco Guinea ◽  
...  

2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Alexander S. Minkin ◽  
Irina V. Lebedeva ◽  
Andrey M. Popov ◽  
Andrey A. Knizhnik

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Jin Cao ◽  
Maoyuan Wang ◽  
Shi-Feng Qian ◽  
Cheng-Cheng Liu ◽  
Yugui Yao

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4109
Author(s):  
Ramin Ahmadi ◽  
Mohammad Taghi Ahmadi ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

The outstanding properties of graphene-based components, such as twisted graphene, motivates nanoelectronic researchers to focus on their applications in device technology. Twisted graphene as a new class of graphene structures is investigated in the platform of transistor application in this research study. Therefore, its geometry effect on Schottky transistor operation is analyzed and the relationship between the diameter of twist and number of twists are explored. A metal–semiconductor–metal twisted graphene-based junction as a Schottky transistor is considered. By employing the dispersion relation and quantum tunneling the variation of transistor performance under channel length, the diameter of twisted graphene, and the number of twists deviation are studied. The results show that twisted graphene with a smaller diameter affects the efficiency of twisted graphene-based Schottky transistors. Additionally, as another main characteristic, the ID-VGS is explored, which indicates that the threshold voltage is increased by diameter and number of twists in this type of transistor.


Carbon ◽  
2021 ◽  
Vol 176 ◽  
pp. 431-439
Author(s):  
Tuan-Hoang Tran ◽  
Raul D. Rodriguez ◽  
Marco Salerno ◽  
Aleksandar Matković ◽  
Christian Teichert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document