scholarly journals Electronic structure and reactivity of tirapazamine as a radiosensitizer

2021 ◽  
Vol 27 (6) ◽  
Author(s):  
José Romero ◽  
Thana Maihom ◽  
Paulo Limão-Vieira ◽  
Michael Probst

AbstractTirapazamine (TP) has been shown to enhance the cytotoxic effects of ionizing radiation in hypoxic cells, thus making it a candidate for a radiosensitizer. This selective behavior is often directly linked to the abundance of O2. In this paper, we study the electronic properties of TP in vacuum, micro-hydrated from one up to three molecules of water and embedded in a continuum of water. We discuss electron affinities, charge distribution, and bond dissociation energies of TP, and find that these properties do not change significantly upon hydration. In agreement with its large electron affinity, and bond breaking triggered by electron attachment requires energies higher than 2.5 eV, ruling out the direct formation of bioactive TP radicals. Our results suggest, therefore, that the selective behavior of TP cannot be explained by a one-electron reduction from a neighboring O2 molecule. Alternatively, we propose that TP’s hypoxic selectivity could be a consequence of O2 scavenging hydrogen radicals.

2009 ◽  
Vol 10 (7) ◽  
pp. 3128-3148 ◽  
Author(s):  
Liangfa Gong ◽  
Jieming Xiong ◽  
Xinmin Wu ◽  
Chuansong Qi ◽  
Wei Li ◽  
...  

The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A' electronic state for neutral molecule and 4A' state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1-4) and De- (BrO4F- → BrO4-mF- + Om and BrO4F- → BrO4-mF + Om-) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2…O2 (3A'← 4A') (B3LYP method).


Sign in / Sign up

Export Citation Format

Share Document