electron attachment
Recently Published Documents


TOTAL DOCUMENTS

1827
(FIVE YEARS 154)

H-INDEX

73
(FIVE YEARS 6)

2021 ◽  
Vol 39 (6) ◽  
pp. 1055-1068
Author(s):  
Margaretha Myrvang ◽  
Carsten Baumann ◽  
Ingrid Mann

Abstract. We investigate if the presence of meteoric smoke particles (MSPs) influences the electron temperature during artificial heating in the D-region. By transferring the energy of powerful high-frequency radio waves into thermal energy of electrons, artificial heating increases the electron temperature. Artificial heating depends on the height variation of electron density. The presence of MSPs can influence the electron density through charging of MSPs by electrons, which can reduce the number of free electrons and even result in height regions with strongly reduced electron density, so-called electron bite-outs. We simulate the influence of the artificial heating by calculating the intensity of the upward-propagating radio wave. The electron temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic collisions with neutral species. The influence of MSPs is investigated by including results from a one-dimensional height-dependent ionospheric model that includes electrons, positively and negatively charged ions, neutral MSPs, singly positively and singly negatively charged MSPs, and photochemistry such as photoionization and photodetachment. We apply typical ionospheric conditions and find that MSPs can influence both the magnitude and the height profile of the heated electron temperature above 80 km; however, this depends on ionospheric conditions. During night, the presence of MSPs leads to more efficient heating and thus a higher electron temperature above altitudes of 80 km. We found differences of up to 1000 K in electron temperature for calculations with and without MSPs. When MSPs are present, the heated electron temperature decreases more slowly. The presence of MSPs does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the heated electron temperature with MSPs and without MSPs is less than 25 K. We also investigate model runs using MSP number density profiles for autumn, summer and winter. The night-time electron temperature is expected to be 280 K hotter in autumn than during winter conditions, while the sunlit D-region is 8 K cooler for autumn MSP conditions than for the summer case, depending on altitude. Finally, an investigation of the electron attachment efficiency to MSPs shows a significant impact on the amount of chargeable dust and consequently on the electron temperature.


Author(s):  
Ilija Simonovic ◽  
Danko Bošnjaković ◽  
Zoran Lj Petrovic ◽  
Ron D White ◽  
Sasa Dujko

Abstract Using a multi-term solution of the Boltzmann equation and Monte Carlo simulation technique we study behaviour of the third-order transport coefficients for electrons in model gases, including the ionisation model of Lucas and Saelee and modified Ness-Robson model of electron attachment, and in real gases, including N2 and CF4. We observe negative values in the E/n 0-profiles of the longitudinal and transverse third-order transport coefficients for electrons in CF4 (where E is the electric field and n 0 is the gas number density). While negative values of the longitudinal third-order transport coefficients are caused by the presence of rapidly increasing cross sections for vibrational excitations of CF4, the transverse third-order transport coefficient becomes negative over the E/n 0-values after the occurrence of negative differential conductivity. It is found that the accuracy of the two-term approximation for solving the Boltzmann equation is sufficient to investigate the behaviour of the third-order transport coefficients in N2, while for electrons in CF4 it produces large errors and is not even qualitatively correct . The influence of implicit and explicit effects of electron attachment and ionisation on the third-order transport tensor is investigated. In particular, we discuss the effects of attachment heating and attachment cooling on the third-order transport coefficients for electrons in the modified Ness-Robson model, while the effects of ionisation are studied for electrons in the ionisation model of Lucas and Saelee, N2 and CF4. The concurrence between the third-order transport coefficients and the components of the diffusion tensor, and the contribution of the longitudinal component of the third-order transport tensor to the spatial profile of the swarm are also investigated. For electrons in CF4 and CH4, we found that the contribution of the component of the third-order transport tensor to the spatial profile of the swarm between approximately 50 Td and 700 Td, is almost identical to the corresponding contribution for electrons in N2. This suggests that the recent measurements of third-order transport coefficients for electrons in N2 may be extended and generalized to other gases, such as CF4 and CH4.


Author(s):  
Nail L. Asfandiarov ◽  
Mars Muftakhov ◽  
Stanislav Anatolievich Pshenichnyuk ◽  
Rustam G. Rakhmeev ◽  
Aleksey Safronov ◽  
...  

2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Fabian Schmidt ◽  
Martin Philipp Mues ◽  
Jan Hendrik Bredehöft ◽  
Petra Swiderek

Abstract Chemical reactions in mixed molecular ices as relevant in the context of astrochemistry can be initiated by electron-molecule interactions. Dissociative electron attachment (DEA) as initiating step is identified from the enhancement of product yields upon irradiation at particular electron energies. Herein, we show that DEA to CO leads to the formation of HCN in mixed CO/$$\hbox {NH}_{{3}}$$ NH 3 ice at electron energies around 11 eV and 16 eV. We propose that this reaction proceeds via insertion of the neutral C fragment into a N–H bond. In the case of CO/$$\hbox {H}_{{2}}$$ H 2 O and CO/$$\hbox {CH}_{{3}}$$ CH 3 OH ices, a resonant enhancement of the yields of HCOOH and $$\hbox {CH}_{{3}}$$ CH 3 OCHO, respectively, is observed around 10 eV. In both ices, both molecular constituents exhibit DEA processes in this energy range so that the energy-dependent product yield alone does not uniquely identify the relevant DEA channel. However, we demonstrate by comparing with earlier results on mixed ices where CO is replaced by $$\hbox {C}_{{2}}\hbox {H}_{{4}}$$ C 2 H 4 that DEA to CO is again responsible for the enhanced product formation. In this case, $$\hbox {O}^{\cdot -}$$ O · - activates $$\hbox {H}_{{2}}$$ H 2 O or $$\hbox {CH}_{{3}}$$ CH 3 OH which leads to the formation of larger products. We thus show that DEA to CO plays an important role in electron-induced syntheses in molecular ices. Graphical abstract


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 103
Author(s):  
Harindranath Ambalampitiya ◽  
Kathryn Hamilton ◽  
Oleg Zatsarinny ◽  
Klaus Bartschat ◽  
Matt Turner ◽  
...  

Cross sections for electron scattering from atomic and molecular iodine are calculated based on the R-matrix (close-coupling) method. Elastic and electronic excitation cross sections are presented for both I and I2. The dissociative electron attachment and vibrational excitation cross sections of the iodine molecule are obtained using the local complex potential approximation. Ionization cross sections are also computed for I2 using the BEB model.


2021 ◽  
Vol 155 (18) ◽  
pp. 184301
Author(s):  
Stanislav A. Pshenichnyuk ◽  
Alberto Modelli ◽  
Nail L. Asfandiarov ◽  
Rustam G. Rakhmeyev ◽  
Aleksey M. Safronov ◽  
...  

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Sylwia Ptasinska

Ionizing radiation releases a flood of low-energy electrons that often causes the fragmentation of the molecular species it encounters. Special attention has been paid to the electrons’ contribution to DNA damage via the dissociative electron attachment (DEA) process. Although numerous research groups worldwide have probed these processes in the past, and many significant achievements have been made, some technical challenges have hindered researchers from obtaining a complete picture of DEA. Therefore, this research perspective calls urgently for the implementation of advanced techniques to identify non-charged radicals that form from such a decomposition of gas-phase molecules. Having well-described DEA products offers a promise to benefit society by straddling the boundary between physics, chemistry, and biology, and it brings the tools of atomic and molecular physics to bear on relevant issues of radiation research and medicine.


Author(s):  
A. Mauracher ◽  
H. Schöbel ◽  
S. Haughey ◽  
S.E. Huber ◽  
T.A. Field

Sign in / Sign up

Export Citation Format

Share Document