Dynamic load distribution of planetary gear sets subject to both internal and external excitations

Author(s):  
Lokaditya Ryali ◽  
David Talbot
Author(s):  
Yong Hu ◽  
David Talbot ◽  
Ahmet Kahraman

Abstract In this paper, a load distribution model for a double-planet planetary gear set is developed by modifying an existing single-planet planetary gear set model [1] to account for an additional planet to planet gear mesh and their impact on phasing relationship among different sun-planet, planet-planet and planet-ring gear meshes. Similar to the single-planet planetary gear set model, the double-planet planetary gear set model accounts for effects of various component and system level variations such as supporting conditions, gear tooth modifications, manufacturing errors and kinematic configurations. The double-planet planetary gear load distribution model is derived for both rigid and flexible ring gear rim, while only parametric studies for a rigid ring gear rim is presented in this paper to demonstrate load distribution characteristics of double-planet planetary gear sets with different planet bearing stiffness and combination of various types of manufacturing errors, including pin hole position error and runout errors.


Author(s):  
Yong Hu ◽  
David Talbot ◽  
Ahmet Kahraman

Here, a load distribution model of planetary gear sets is presented capable of dealing with planetary gear sets with any component level and gear set level design variations such as component supporting conditions, different kinds of gear modifications and planetary gear sets with different numbers of equally or unequally spaced planets as well as different gear set kinematic configurations while considering gear mesh phasing. It also accounts for classes of planetary gear set manufacturing and assembly related errors associated with the carrier or gears, i.e. pinhole position errors, run-out errors and tooth thickness errors. Example analyses are provided to indicate the need for a model of this type when studying load distribution of planetary gear sets due to unique loading of the gear meshes associated with planetary gear sets. Comparisons to measurements existing in the literature are provided.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Yong Hu ◽  
David Talbot ◽  
Ahmet Kahraman

In order to accurately predict ring gear deformations and to investigate the effects of ring gear flexibility on quasi-static behaviors of planetary gear sets, a complete load distribution model of planetary gear sets having flexible ring gears will be formulated here based on the baseline model proposed by the same authors (Hu, Y., Talbot, D., and Kahraman, A., 2018, “A Load Distribution Model for Planetary Gear Sets,” ASME J. Mech. Des., 140(5), p. 053302). Direct comparisons to published experiments are provided to assess the accuracy of the proposed load distribution methodology. Example analyses with flexible ring gear rims are performed indicating that ring gear flexibility could influence gear mesh-level and planetary gear set system-level behaviors. Influence of spline supporting a ring gear is also investigated revealing that positions of planet branches with respect to external splines could influence ring deflections and resultant gear mesh load distributions.


2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Lokaditya Ryali ◽  
Abhishek Verma ◽  
Isaac Hong ◽  
David Talbot ◽  
Farong Zhu

Abstract This study presents a unique experimental methodology that synchronously measures various quasi-static responses of a simple four-planet planetary gear set, namely, planet load sharing, overall transmission error (OTE), and floating sun gear orbits. Strain gauges mounted directly on the planet pins were used to monitor the load shared among the planets, which is a crucial design criterion for durability and performance. High-precision optical encoders were used to measure the OTE of the gear set to explore its diagnostic value in identifying system errors. Radial motions of the floating sun gear, which are critical to the self-centering and load sharing behavior of the gear set, were monitored using magnetic proximity probes. The influence of various design parameters and operating conditions such as planet mesh phasing, carrier pin position errors, gear tooth modifications, and input torque on the system’s response will be investigated by performing an extensive set of experiments in a repeatable and accurate manner. Finally, these experimental results will be recreated theoretically using the static planetary load distribution model of Hu et al. (2018, “A Load Distribution Model for Planetary Gear Sets,” ASME J. Mech. Des., 140(5), p. 53302) to not only validate the model but also comprehend the measured behavior.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Y. Hu ◽  
D. Talbot ◽  
A. Kahraman

A load distribution model of planetary gear sets presented is capable of simulating planetary gear sets having component- and system-level design variations such as component supporting conditions, different kinds of gear modifications and planetary gear sets with different numbers of equally or unequally spaced planets as well as different gear set kinematic configurations while considering gear mesh phasing. It also accounts for classes of planetary gear set manufacturing and assembly related errors associated with the carrier or gears, i.e., pinhole position errors, run-out errors, and tooth thickness errors. Example analyses are provided to indicate the need for a model of this type when studying load distribution of planetary gear sets due to unique loading of the gear meshes associated with planetary gear sets. Comparisons to measurements existing in the literature are provided.


ROBOT ◽  
2012 ◽  
Vol 34 (1) ◽  
pp. 114 ◽  
Author(s):  
Zhigang ZHAO ◽  
Tiansheng LÜ

2011 ◽  
Vol 24 (6) ◽  
pp. 317-329 ◽  
Author(s):  
Arsalan Jamialahmadi ◽  
Thomas Trost ◽  
Sören Östlund

2013 ◽  
Vol 415 ◽  
pp. 582-585
Author(s):  
Xing Xu ◽  
Zhen Cui ◽  
Jin Chao Zhang

According to the indicator diagram of damper, the indicator diagram plumpness was proposed as a quantitative index, and its mathematical relationships with the sprung mass acceleration, suspension dynamic travel and tire dynamic load were built. Moreover, the influence of the total area on suspension characteristics was analyzed in time domain and frequency domain. The results show that, the increase of the indicator diagram plumpness can effectively restrain the variation of suspension dynamic travel and tire dynamic load, meanwhile, the body acceleration will be enlarged. Excessive indicator diagram plumpness also affects the dynamic tire load distribution in frequency domain, and it will decrease the driving security. Therefore, it should be reasonably selected from the performance indicators, which is based on the requirement of vehicle demand in the design process.


Sign in / Sign up

Export Citation Format

Share Document