Potential Changes in the Distributions of Western North America Tree and Shrub Taxa under Future Climate Scenarios

Ecosystems ◽  
2001 ◽  
Vol 4 (3) ◽  
pp. 200-215 ◽  
Author(s):  
Sarah L. Shafer ◽  
Patrick J. Bartlein ◽  
Robert S. Thompson
2018 ◽  
Author(s):  
Daniel Enrique Ibarra

Knowledge of Earth’s climate history and sensitivity, combined with modeling past and future climate, are central to informing policy decisions regarding future climate change. The hydrologic response to future warming scenarios due to increased anthropogenic CO2 emissions remains uncertain. Freshwater availability in the arid western United States is projected to decrease in availability as increased agricultural, urban and industrial uses continue to stress supplies. Motivated by the potential for dramatic future hydrologic changes, studies recording the abrupt transitions between different equilibrium states of natural past climate variability shed light on our understanding of the modern climate system.The presence of pluvial lakes in the Basin and Range Province, in the western United States, during the late Pleistocene (40 to 10 ka) indicates far greater moisture availability during the Pleistocene glacials. This study investigates the timing and magnitude of the most recent pluvial lake cycle that filled Surprise Valley, California using geophysical, geochemical and geochronologic tools. Spanning 31.2 to 4.6 ka, this new lake level record places the highest lake level, at 180 meters above present day playa, at 13.9 ± 1.2 ka. This age appears to be nearly synchronous with highstands of Lake Lahontan to the south and the Chewaucan Basin to the north. Additionally, most of the Basin and Range lake highstands, including Lake Surprise, follow peaks in precipitation minus evapotranspiration (P-ET) by 8-10 kyr. By compiling a diverse set of paleoclimate data available for western North America, I found that the timing and geographic distribution of lake highstands is inconsistent with increased precipitation in response to shifting westerly winds, the current model for the genesis of large lakes in western North America. Rather, lakes levels are more strongly correlated with changes in summer insolation, suggesting that lake highstands were likely facilitated by colder temperatures and increased humidity due to the presence of continental ice sheets and increased atmospheric convergence. I compared the constraints from lake and soil-based records to Atmosphere-Ocean General Circulation Model simulations from the Paleoclimate Model Intercomparison Project 2. Based on model-proxy intercomparison, the Atmosphere-Ocean General Circulation Models, the same models used to also assess future climatic changes, poorly predict hydrologic quantities for the Last Glacial Maximum.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1720
Author(s):  
Momcilo Markus ◽  
Ximing Cai ◽  
Ryan Sriver

Climate projections indicate that in many regions of the world the risk of increased flooding or more severe droughts will be higher in the future. To account for these trends, hydrologists search for the best planning and management measures in an increasingly complex and uncertain environment. The collection of manuscripts in this Special Issue quantifies the changes in projected hydroclimatic extremes and their impacts using a suite of innovative approaches applied to regions in North America, Asia, and Europe. To reduce the uncertainty and warrant the applicability of the research on projections of future floods and droughts, their continued development and testing using newly acquired observational data are critical.


2021 ◽  
Vol 4 ◽  
Author(s):  
Mee-Sook Kim ◽  
John W. Hanna ◽  
Jane E. Stewart ◽  
Marcus V. Warwell ◽  
Geral I. McDonald ◽  
...  

Climate change and associated disturbances are expected to exacerbate forest root diseases because of altered distributions of existing and emerging forest pathogens and predisposition of trees due to climatic maladaptation and other disturbances. Predictions of suitable climate space (potential geographic distribution) for forest pathogens and host trees under contemporary and future climate scenarios will guide the selection of appropriate management practices by forest managers to minimize adverse impacts of forest disease within forest ecosystems. A native pathogen (Armillaria solidipes) that causes Armillaria root disease of conifers in North America is used to demonstrate bioclimatic models (maps) that predict suitable climate space for both pathogen and a primary host (Pseudotsuga menziesii, Douglas-fir) under contemporary and future climate scenarios. Armillaria root disease caused by A. solidipes is a primary cause of lost productivity and reduced carbon sequestration in coniferous forests of North America, and its impact is expected to increase under climate change due to tree maladaptation. Contemporary prediction models of suitable climate space were produced using Maximum Entropy algorithms that integrate climatic data with 382 georeferenced occurrence locations for DNA sequence-confirmed A. solidipes. A similar approach was used for visually identified P. menziesii from 11,826 georeferenced locations to predict its climatic requirements. From the contemporary models, data were extrapolated through future climate scenarios to forecast changes in geographic areas where native A. solidipes and P. menziesii will be climatically adapted. Armillaria root disease is expected to increase in geographic areas where predictions suggest A. solidipes is well adapted and P. menziesii is maladapted within its current range. By predicting areas at risk for Armillaria root disease, forest managers can deploy suitable strategies to reduce damage from the disease.


Hydrobiologia ◽  
2020 ◽  
Vol 847 (6) ◽  
pp. 1505-1520
Author(s):  
Achyut Kumar Banerjee ◽  
Nathan E. Harms ◽  
Abhishek Mukherjee ◽  
John F. Gaskin

Sign in / Sign up

Export Citation Format

Share Document