Opto-Electronic Block-Cipher Based on Iteration of the 2-D Toggle Cellular Automata: Algorithm

1999 ◽  
Vol 6 (2) ◽  
pp. 110-117 ◽  
Author(s):  
Maria Madjarova ◽  
Mitsugu Kakuta ◽  
Takashi Obi ◽  
Masahiro Yamaguchi ◽  
Nagaaki Ohyama
Author(s):  
Yuliya Tanasyuk ◽  
Petro Burdeinyi

The given paper is devoted to the software development of block cipher based on reversible one-dimensional cellular automata and the study of its statistical properties. The software implementation of the proposed encryption algorithm is performed in C# programming language in Visual Studio 2017. The paper presents specially designed approach for key generation. To ensure desired cryptographic stability, the shared secret parameters can be adjusted to contain information needed for creating substitution tables, defining reversible rules, and hiding final data. For the first time, it is suggested to create substitution tables based on iterations of a cellular automaton that is initialized by the key data.


2005 ◽  
Author(s):  
Yujie Wu ◽  
Qiang Yu ◽  
Sven K. Esche

This paper reports on one part of a research project supported by NSF, which aims at developing a multi-scale methodology for systematic microstructure prediction in thermo-mechanical processing of metals. Based on combining mesoscopic microstructure models with macroscopic process formulations, the methodology is expected to provide universally applicable and accurate microstructure prediction capabilities. Cellular Automata (CA) models have been widely used in scientific studies of various microstructural phenomena. This paper discusses the modeling of the static recrystallization phenomenon by employing a regular CA algorithm. The recrystallization processes of single-phase systems under different nucleation conditions are simulated followed by the recrystallization kinetics analysis for 200 × 200 two-dimensional lattice. The performed simulations of static recrystallization confirm that the recrystallized volume fractions are time dependent. Furthermore, the simulated microstructures validate the following Johnson-Mehl-Avrami-Kolmogorov (JMAK) model according to which the recrystallized volume fraction is a sigmoidal function of time, and their evolution matches the JMAK equation with the expected exponents.


Author(s):  
Kamel Mohammed Faraoun

This paper proposes a semantically secure construction of pseudo-random permutations using second-order reversible cellular automata. We show that the proposed construction is equivalent to the Luby-Rackoff model if it is built using non-uniform transition rules, and we prove that the construction is strongly secure if an adequate number of iterations is performed. Moreover, a corresponding symmetric block cipher is constructed and analysed experimentally in comparison with popular ciphers. Obtained results approve robustness and efficacy of the construction, while achieved performances overcome those of some existing block ciphers.


Sign in / Sign up

Export Citation Format

Share Document