Strength properties and effect of moisture content on the bending and compressive strength parallel to the grain of sugi (Cryptomeria japonica) round timber

2012 ◽  
Vol 59 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Hirofumi Ido ◽  
Hirofumi Nagao ◽  
Hideo Kato ◽  
Sachiko Miura
2021 ◽  
Vol 2 (2) ◽  
pp. 308-320
Author(s):  
Paul Chukwuka EZE ◽  
Eze CHIKAODILI ◽  
Ide PATRICK EJIKE

The effect of moisture content on the mechanical properties of agricultural material is essential during design and adjustment of machines used during harvest, cleaning, separation, handling and storage. This study determined some mechanical properties of Black and Brown colored of watermelon seed grown in Nigeria under different moisture contents range of 6.5 to 27.8% (d.b). The results for the mechanical properties obtained ranged from 15.68-29.54 N for compressive force; 1.95-3.40 mm for compressive extension; 0.13-0.33 N mm-2 for compressive strength; and 0.17-1.93 kJ for deformation energy at vertical loading position while at horizontal loading position, results obtained ranged from 14.71-38.36 N for compressive force; 1.94-4.20 mm for compressive extension; 0.16-0.32 N mm-2 for compressive strength; and 1.47-76.39 kJ for deformation energy for Black colored watermelon seed. The compressive force, compressive extension, compressive strength, deformation energy ranged from 14.18-36.49 N, 1.85-5.20 mm, 0.19 0.76 N mm-2, 26.23-189.75 kJ at vertical loading position and 16.47-41.82 N, 1.68-11.08 mm, 0.34- 0.57 N mm-2, 27.67-319.99 kJ at horizontal loading position for Brown colored watermelon seed. The correlation between the mechanical properties and moisture content was statistically significant at (p≤0.05) level. It is also economical to load Black colored in vertical loading position at 27.8% moisture content and Brown colored in vertical loading position at 27.8% moisture content to reduce energy demand when necessary to crack or compress the seed. This research has generated data that are efficiently enough to design and fabricate processing and storage structures for Black and Brown water melon seeds.


1982 ◽  
Vol 9 (4) ◽  
pp. 602-610 ◽  
Author(s):  
Borg Madsen

The present allowable stresses for lumber and the associated adjustment factors stated in Canadian Standard CSA-086 are based upon tests conducted using small clear wood specimens. Recent comprehensive tests in which full-size lumber specimens were used (in-grade testing) showed that the present allowable stresses cannot be confirmed and also that new adjustment factors need to be developed.This paper deals with the effect of moisture content on the strength properties. Tests were conducted and reported dealing with: bending, stiffness, tension, compression parallel to grain, compression perpendicular to grain, and shear. From these tests it was possible to make specific recommendations for a new set of moisture content adjustment factors, to be used in design, that more realistically reflect the behaviour of lumber.


2014 ◽  
Vol 28 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Abozar Nasirahmadi ◽  
Mohammad H. Abbaspour-Fard ◽  
Bagher Emadi ◽  
Nasser Behroozi Khazaei

Abstract The present investigation deals with analyzing the compressive strength properties of two varieties (Tarom and Fajr) of parboiled paddy and milled rice including: ultimate stress, modulus of elasticity, rupture force and rupture energy. Combined artificial neural network and genetic algorithm were also applied to model these properties. The parboiled samples were prepared with three soaking temperatures (25, 50 and 75°C) and three steaming times (10, 15 and 20 min). The samples were then dried to final moisture contents of 8, 10 and 12% (w.b.). In general, Tarom variety had higher compressive strength properties for paddy and milled rice than Fajr variety. With increase in steaming time from 10 to 20 min, all mentioned properties increased significantly, whereas these properties were decreased with increasing moisture content from 8 to 12% (w.b.). Coupled artificial neural network and genetic algorithm model with one hidden layer, three inputs (soaking temperature, steaming time and moisture content), was developed to predict the compressive strength properties as model outputs. Results indicated that this model could predict these properties with high correlation and low mean squared error.


Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


Sign in / Sign up

Export Citation Format

Share Document