Enzymatic dehydrogenative polymerization of monolignol dimers

2015 ◽  
Vol 61 (6) ◽  
pp. 608-619 ◽  
Author(s):  
Yasuyuki Matsushita ◽  
Chisato Ko ◽  
Dan Aoki ◽  
Shota Hashigaya ◽  
Sachie Yagami ◽  
...  
Holzforschung ◽  
2006 ◽  
Vol 60 (5) ◽  
pp. 513-518 ◽  
Author(s):  
Yuki Tobimatsu ◽  
Toshiyuki Takano ◽  
Hiroshi Kamitakahara ◽  
Fumiaki Nakatsubo

Abstract Dehydrogenative polymerization of isoconiferin (IC; coniferyl alcohol γ-O-β-D-glucopyranoside) catalyzed by horseradish peroxidase (HRP) was carried out. The polymerization of IC proceeded in a homogeneous system, resulting in a water-soluble dehydrogenation polymer (IC-DHP). The degree of polymerization (DP) of IC-DHP was significantly higher than that of a standard dehydrogenative polymer (CA-DHP) obtained from coniferyl alcohol (CA) in a heterogeneous system. Under optimum conditions, the DP of IC-DHP was 44 (M n=1.5×104), whereas that for CA-DHP was only 11 (M n=3.0×103, as acetate). Spectroscopic analyses confirmed that IC-DHP has a lignin-like structure containing D-glucose moieties attached to the lignin side-chains. The D-glucose unit introduced into γ-O position of CA essentially influenced the water solubility and molecular mass of the resulting DHP.


Holzforschung ◽  
2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Yuki Tobimatsu ◽  
Toshiyuki Takano ◽  
Hiroshi Kamitakahara ◽  
Fumiaki Nakatsubo

Abstract Horseradish peroxidase (HRP)-catalyzed dehydrogenative polymerization of guaiacyl (G) and syringyl (S)-type monolignol γ-O-glucosides, isoconiferin (iso-G) and isosyringin (iso-S), which contain a hydrophilic glucosyl unit on γ-position of coniferyl alcohol and sinapyl alcohol, respectively, was monitored by gel permeation chromatography coupled with photodiode array detection (GPC-PDA). Contrary to the conventional dehydrogenative polymerization of monolignols, the polymerization of the glycosides produces water-soluble synthetic lignins (DHPs) in a homogeneous aqueous phase. Taking advantage of this unique reaction system, the method was developed to follow the changes of molecular weights in the course of DHP formations. Moreover, PDA detection permits determination of oligomeric S-type quinone methide intermediates (QMs) formed as stable transient compounds during polymerization of iso-S. A detailed comparison of the polymerization profiles revealed entirely different behaviors of G- and S-type monomers. The data strongly support the view that the low reactivity of oligomeric S-type QMs impedes the formation of DHPs from S-type monomers. In copolymerization of G- and S-type monomers, it is conceivable that G-type phenolic hydroxyl groups serve as good nucleophilic reactants to scavenge S-type QMs resulting in efficient production of DHPs. As a consequence, the present approach can be a powerful tool to study the in vitro dehydrogenative polymerization providing further mechanistic insights into lignin polymerization in vivo.


2007 ◽  
Vol 55 (6) ◽  
pp. 2201-2208 ◽  
Author(s):  
Sayoko Harigaya ◽  
Takayuki Honda ◽  
Lu Rong ◽  
Tetsuo Miyakoshi ◽  
Chen

Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Jun Shigeto ◽  
Hiroki Honjo ◽  
Koki Fujita ◽  
Yuji Tsutsumi

AbstractThe mechanism of lignin dehydrogenative polymerization (DHP), made by means of horseradish peroxidase (HRP), was studied in comparison with other plant peroxidases. Interestingly, HRP is efficient for guaiacyl type polymer formation (G-DHPs), but is not efficient in the case of syringyl type DHPs (S-DHPs). It was previously demonstrated that lignification-relatedArabidopsisthalianaperoxidases, AtPrx2, AtPrx25 and AtPrx71, and cationic cell-wall-bound peroxidase (CWPO-C) fromPopulus albaare successful to oxidize syringyl- and guaiacyl-type monomers and larger lignin-like molecules. This is the reason why in the present study the DHP formation by means of these recombinant peroxidases was tested, and all these enzymes were successful for formation of both G-DHP and S-DHP in acceptable yields. CWPO-C led to S-DHP molecular size distribution similar to that of isolated lignins.


1997 ◽  
Vol 45 (5) ◽  
pp. 911-918 ◽  
Author(s):  
Guan Shao-Ying ◽  
Juraj Mlynár ◽  
Simo Sarkanen

Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Yasuyuki Matsushita ◽  
Masaya Okayama ◽  
Dan Aoki ◽  
Sachie Yagami ◽  
Kazuhiko Fukushima

Abstract No clear picture has yet been elaborated concerning the mechanism of lignin growth, and thus this topic is the focus of the present paper. Namely, the enzymatic dehydrogenative polymerization (DHP formation) of coniferyl alcohol (CA, as a monolignol) and three dilignols and their reaction kinetics were investigated. The dilignols [guaiacylglycerol-β-coniferyl ether (IβO4), dehydrodiconiferyl alcohol (IIβ5), and pinoresinol (IIIββ)] and CA as a monolignol [(3-OCD3)-coniferyl alcohol (CAOCD3)] were synthesized and subjected to enzymatic DHP formation. The dilignol derived from CAOCD3 could be identified by its higher molecular weight in comparison with the starting dilignols (IβO4, IIβ5, and IIIββ). Based on the observed consumption rate of the CA and its dilignols, it was proposed that a radical transfer system exists between the dilignols, which is generated from the CA and the starting substrates.


Sign in / Sign up

Export Citation Format

Share Document