Climate change and poverty: building resilience of rural mountain communities in South Sikkim, Eastern Himalaya, India

2013 ◽  
Vol 14 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Anamika Barua ◽  
Suparana Katyaini ◽  
Bhupen Mili ◽  
Pernille Gooch
2017 ◽  
pp. 163-186 ◽  
Author(s):  
Hamideh Maleksaeidi ◽  
Marzieh Keshavarz ◽  
Ezatollah Karami ◽  
Saeid Eslamian

2021 ◽  
Author(s):  
Arindam Chowdhury ◽  
Milap Chand Sharma ◽  
Sunil Kumar De ◽  
Manasi Debnath

Abstract. Glaciers of the Tista basin represent an important water resource for mountain communities and large population downstream. The present article attempts to assess the observable changes in the glacier area in the Chhombo Chhu Watershed (CCW) of Tista basin, Sikkim Himalaya. The CCW consists of 74 glaciers (>0.02 km2) with a mean glacier size of 0.61 km2. The change of such glacier outlines obtained from the declassified hexagon KH-9 (1975), Landsat 5 TM (1989), Landsat 7 ETM+ (2000), Landsat 5 TM (2010), and Sentinel 2A (2018). The total glacier area in 1975 was 62.6 ±0.7 km2; by 2018, the area had decreased to 44.8 ±1.5 km2, an area loss of 17.9 ± 1.7 km2 (0.42 ± 0.04 km2 a−1). Debris free glaciers exhibit more area loss by 11.8 ± 1.2 km2 (0.27 ± 0.03  km2 a−1) followed by partially debris-covered (5.0 ± 0.4 km2 or 0.12 ± 0.01 km2 a−1) and maximum debris-covered (1.0 ± 0.1 km2 or −0.02 ± 0.002 km2 a−1) glaciers. The quantum of glacier area loss in the CCW of Sikkim Himalaya took its pace during 2000–2010 (0.62 ± 0.5 km2 a−1) and 2010–2018 (0.77 ± 0.6 km2 a−1) timeframes. Field investigations of selected glaciers and climatic records also support the trend in glacier recession in the CCW due to a significant increase in temperature trend and more or less static precipitation since 1995. Glacier retreat rates in the CCW were almost similar to the Changme Khangpu basin and other selected glaciers in Sikkim Himalaya. This glacier inventory and area change analysis will provide valuable information to the glaciological and hydrological community to model and plan the water resources in the Sikkim state of Eastern Himalaya. The dataset is now available from the Zenodo web portal: http://doi.org/10.5281/zenodo.4457183 (Chowdhury et al., 2021).


2011 ◽  
pp. 349-363 ◽  
Author(s):  
Harry Storch ◽  
Nigel Downes ◽  
Lutz Katzschner ◽  
Nguyen Xuan Thinh

2018 ◽  
Vol 7 (9) ◽  
pp. 343
Author(s):  
Adish Khezri ◽  
Rohan Bennett ◽  
Jaap Zevenbergen

Climate change challenges mountain communities to prepare themselves via Community-Based Adaptation (CBA) plans that reduce vulnerability. This paper outlines the evaluation of a developed web-based information system to support CBA, referred to as a Mountain Community Adaptive System (MCAS). The web-based user interface visualizes collated data from data providers, integrating it with near real-time climate and weather datasets. The interface provides more up-to-date information than was previously available on the environment, particularly on land and climate. MCAS, a cloud-based Land Information System (LIS), was developed using an Agile-inspired approach offering system creation based on bare minimum system requirements and iterative development. The system was tested against Fit-For-Purpose Land Administration (FFP LA) criteria to assess the effectiveness in a case from Nepal. The results illustrate that an MCAS-style system can provide useful information such as land use status, adaptation options, near real-time rainfall and temperature details, amongst others, to enable services that can enhance CBA activities. The information can facilitate improved CBA planning and implementation at the mountain community level. Despite the mentioned benefits of MCAS, ensuring system access was identified as a key limitation: smartphones and mobile technologies still remain prohibitively expensive for members of mountain communities, and underlying information communication technology (ICT) infrastructures remain under-developed in the assessed mountain communities. The results of the evaluation further suggest that the land-related aspects of climate change should be added to CBA initiatives. Similarly, existing LIS could have functionalities extended to include climate-related variables that impact on land use, tenure, and development.


Sign in / Sign up

Export Citation Format

Share Document