Non-asymptotic Error Bound for Optimal Prediction of Function-on-Function Regression by RKHS Approach

Author(s):  
Hong Zhi Tong ◽  
Ling Fang Hu ◽  
Michael Ng
2011 ◽  
Vol 39 (6) ◽  
pp. 3211-3233 ◽  
Author(s):  
Michael Nussbaum ◽  
Arleta Szkoła

2020 ◽  
Vol 26 (3) ◽  
pp. 171-176
Author(s):  
Ilya M. Sobol ◽  
Boris V. Shukhman

AbstractA crude Monte Carlo (MC) method allows to calculate integrals over a d-dimensional cube. As the number N of integration nodes becomes large, the rate of probable error of the MC method decreases as {O(1/\sqrt{N})}. The use of quasi-random points instead of random points in the MC algorithm converts it to the quasi-Monte Carlo (QMC) method. The asymptotic error estimate of QMC integration of d-dimensional functions contains a multiplier {1/N}. However, the multiplier {(\ln N)^{d}} is also a part of the error estimate, which makes it virtually useless. We have proved that, in the general case, the QMC error estimate is not limited to the factor {1/N}. However, our numerical experiments show that using quasi-random points of Sobol sequences with {N=2^{m}} with natural m makes the integration error approximately proportional to {1/N}. In our numerical experiments, {d\leq 15}, and we used {N\leq 2^{40}} points generated by the SOBOLSEQ16384 code published in 2011. In this code, {d\leq 2^{14}} and {N\leq 2^{63}}.


2021 ◽  
Vol 115 ◽  
pp. 107917
Author(s):  
Ángel Carmona-Poyato ◽  
Nicolás Luis Fernández-Garcia ◽  
Francisco José Madrid-Cuevas ◽  
Antonio Manuel Durán-Rosal

Author(s):  
David Ek ◽  
Anders Forsgren

AbstractThe focus in this paper is interior-point methods for bound-constrained nonlinear optimization, where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. We propose partial and full approximate solutions to the Newton systems. The specific approximate solution depends on estimates of the active and inactive constraints at the solution. These sets are at each iteration estimated by basic heuristics. The partial approximate solutions are computationally inexpensive, whereas a system of linear equations needs to be solved for the full approximate solution. The size of the system is determined by the estimate of the inactive constraints at the solution. In addition, we motivate and suggest two Newton-like approaches which are based on an intermediate step that consists of the partial approximate solutions. The theoretical setting is introduced and asymptotic error bounds are given. We also give numerical results to investigate the performance of the approximate solutions within and beyond the theoretical framework.


Sign in / Sign up

Export Citation Format

Share Document