CRISPR/Cas9 genome editing shows the important role of AZC_2928 gene in nitrogen-fixing bacteria of plants

2020 ◽  
Vol 20 (5) ◽  
pp. 657-668
Author(s):  
Xiaojing Wang ◽  
Sang Lv ◽  
Tao Liu ◽  
Jiale Wei ◽  
Shiyuan Qu ◽  
...  
Tropics ◽  
2006 ◽  
Vol 15 (4) ◽  
pp. 365-369 ◽  
Author(s):  
Yasuyuki HASHIDOKO ◽  
Yukako GOTOU ◽  
Mitsuru OSAKI ◽  
Erry PURNOMO ◽  
Limin H. SUWIDO ◽  
...  

Author(s):  
PHILIP T. PIENKOS ◽  
VINOD K. SHAH ◽  
WINSTON J. BRILL

2011 ◽  
Vol 35 (3) ◽  
pp. 657-671 ◽  
Author(s):  
Cleide Aparecida Bomfeti ◽  
Ligiane Aparecida Florentino ◽  
Ana Paula Guimarães ◽  
Patrícia Gomes Cardoso ◽  
Mário César Guerreiro ◽  
...  

The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.


Author(s):  
S. Chaopongpang ◽  
S. Pornpattkul ◽  
C. Pitaksutheepong ◽  
J. Limpananont ◽  
P. Chaisiri ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 326-334
Author(s):  
A. S. Schogolev ◽  
I. M. Raievska

Nitrogen deficiency is a limiting factor in increasing efficiency of crop production in terrestrial ecosystems, and the transformation of inert nitrogen to forms that can be assimilated by plants is mediated by soil microorganisms. Symbiotic nitrogen-fixing bacteria and roots depend on each other and have developed various mechanisms for symbiotic coexistence. The aim of this work was to investigate the role of nitrogen deficiency on growth and development near isogenic by E genes lines of soybean (Glycine max (L.) Merr.): short-day (SD) line with genotype Е1е2е3(Е4е5Е7), and photoperiodic insensitive (PPI) line with genotype е1е2е3(Е4е5Е7) grown from seeds inoculated with active strains of Bradyrhizobium japonicum against the background of local populations of diazotrophs of the genus Azotobacter spp. and establish how the soybean – Bradyrhizobium symbiosis will develop as the genes of both microsymbionts and macrosymbionts are responsible for the formation of the symbiotic complex. Plants were grown in a vegetation chamber, in sand culture. To assess the quantitative composition of microorganisms in the rhizosphere and rhizoplanes, 6 plants were selected from each soybean line, then separation of the zones of the rhizosphere and rhizoplanes was performed using the method of washing and the resulting suspension was used for inoculation on dense nutrient media (mannitol-yeast agar medium and Ashby medium). The results of study showed that seed inoculation and co-inoculation provides faster formation of the symbiotic soybean – Bradyrhizobium complex. Differences in nodulation rates between the short-day line with genotype Е1е2е3(Е4е5Е7), and a photoperiodic insensitive line with genotype е1е2е3(Е4е5Е7) were identified. Determination of the amount of B. japonicum on the medium of mannitol-yeast agar in the rhizosphere and rhizoplane showed that inoculation by B. japonicum strain 634b caused a significant increase in the amount B. japonicum in the rhizosphere and rhizoplane in both soybean lines, comparison with non-inoculated seeds. Then, co-inoculation by B. japonicum strain 634b + Azotobacter chroococcum significantly increased the amount of B. japonicum only in the rhizoplane and decreased their number in the rhizosphere. Determination of the amount of A. chroococcum on the Ashby elective medium in the rhizosphere and rhizoplane showed that the inoculation by B. japonicum strain 634b caused a significant decrease in the amount of A. chroococcum both in the rhizosphere and in the rhizoplane of the PPI line of soybean, and in the rhizosphere the SD line, in comparison with non-inoculated seeds. That can testify to the competitive interaction of these microorganisms. However, the co-inoculation by B. japonicum strain 634b + A. chroococcum in the SD line significantly increased the number of A. chroococcum in the rhizoplane and decreased their number in the rhizosphere, in the PPI line their number decreased in the rhizoplane and increased in the rhizosphere, in comparison with non-inoculated seeds. Probably, the E genes (their dominant or recessive state) of soybean isogenic lines affect the regulation of the content and distribution of sugars. It was established that the nitrogen deficiency stimulated development of the root system of plants and the synthesized sugars were distributed predominantly to the root system growth. We suppose that the seeds’ inoculation had extended sugar consumption to the symbiont, due to which it compensates the lack of nitrogen, but leads to a slower growth of the root system.


Sign in / Sign up

Export Citation Format

Share Document