Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension

2011 ◽  
Vol 16 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Kenichiro Kitamura ◽  
Kimio Tomita
2012 ◽  
Vol 303 (7) ◽  
pp. F939-F943 ◽  
Author(s):  
Kohei Uchimura ◽  
Yutaka Kakizoe ◽  
Tomoaki Onoue ◽  
Manabu Hayata ◽  
Jun Morinaga ◽  
...  

Aldosterone plays an important role in the regulation of blood pressure by modulating the activity of the epithelial sodium channel (ENaC) that consists of α-, β-, and γ-subunits. Aldosterone induces a molecular weight shift of γENaC from 85 to 70 kDa that is necessary for the channel activation. In vitro experiments demonstrated that a dual cleavage mechanism is responsible for this shift. It has been postulated that furin executes the primary cleavage in the Golgi and that the second cleavage is provided by other serine proteases such as prostasin or plasmin at the plasma membrane. However, the in vivo contribution of serine proteases to this cleavage remains unclear. To address this issue, we administered the synthetic serine protease inhibitor camostat mesilate (CM) to aldosterone-infused rats. CM decreased the abundance of the 70-kDa form of ENaC and led to a new 75-kDa form with a concomitant increase in the urinary Na-to-K ratio. Because CM inhibits the protease activity of serine proteases such as prostasin and plasmin, but not furin, our findings strongly indicate that CM inhibited the second cleavage of γENaC and subsequently suppressed ENaC activity. The results of our current studies also suggest the possibility that the synthetic serine protease inhibitor CM might represent a new strategy for the treatment of salt-sensitive hypertension in humans.


Author(s):  
Stefan Wörner ◽  
Bernhard N. Bohnert ◽  
Matthias Wörn ◽  
Mengyun Xiao ◽  
Andrea Janessa ◽  
...  

AbstractTreatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild-type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular function and counterregulatory stimulation of ENaC-mediated sodium transport.


Author(s):  
Bernhard N. Bohnert ◽  
Daniel Essigke ◽  
Andrea Janessa ◽  
Jonas C Schneider ◽  
Matthias Wörn ◽  
...  

Proteolytic activation of the renal epithelial sodium channel ENaC involves cleavage events in its α- and γ-subunits and is thought to mediate sodium retention in nephrotic syndrome (NS). However, detection of proteolytically processed ENaC in kidney tissue from nephrotic mice has been elusive so far. We used a refined Western blot technique to reliably discriminate full-length α- and γ-ENaC and their cleavage products after proteolysis at their proximal and distal cleavage sites (designated from the N-terminus), respectively. Proteolytic ENaC activation was investigated in kidneys from mice with experimental NS induced by doxorubicin or inducible podocin deficiency with or without treatment with the serine protease inhibitor aprotinin. Nephrotic mice developed sodium retention and increased expression of fragments of α- and γ-ENaC cleaved at both the proximal and more prominently at the distal cleavage site, respectively. Treatment with aprotinin but not with the mineralocorticoid receptor antagonist canrenoate prevented sodium retention and upregulation of the cleavage products in nephrotic mice. Increased expression of cleavage products of α- and γ-ENaC was similarly found in healthy mice treated with a low salt diet, sensitive to mineralocorticoid receptor blockade. In human nephrectomy specimens, γ-ENaC was found in the full-length form and predominantly cleaved at its distal cleavage site. In conclusion, murine experimental NS leads to aprotinin-sensitive proteolytic activation of ENaC at both proximal and more prominently distal cleavage sites of its α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.


Sign in / Sign up

Export Citation Format

Share Document