scholarly journals Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation

Author(s):  
Andrew Brughera ◽  
Jason Mikiel-Hunter ◽  
Mathias Dietz ◽  
David McAlpine
2019 ◽  
Author(s):  
Andrew Brughera ◽  
Jason Mikiel-Hunter ◽  
Mathias Dietz ◽  
David McAlpine

AbstractListeners perceive sound-energy as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural time difference (ITD) cue for spatial location. Behaviourally, weighting of ITD conveyed during rising sound-energy is stronger at 600 Hz, a frequency with higher reverberant energy, than at 200 Hz where reverberant energy is lower. Here we computationally explore the combined effectiveness of adaptation before ITD-encoding, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITD conveyed in early-arriving sound. With excitatory inputs from adapting model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a Hodgkin-Huxley-type model MSO neuron reproduces the frequency-dependent emphasis of rising vs. peak sound-energy in ITD-encoding. Maintaining the adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, hemispheric populations of model SBCs and MSO neurons, with simplified membranes for computational efficiency, also reproduce the stronger weighting of ITD information conveyed during rising sound-energy at 600 Hz compared to 200 Hz. This hemispheric model further demonstrates a link between strong weighting of spatial information during rising sound-energy, and correct unambiguous lateralisation of reverberant speech.


2019 ◽  
Author(s):  
Andrew Garrett ◽  
Virginia Lannigan ◽  
Nathanael Yates ◽  
Jennifer Rodger ◽  
Wilhelmina Mulders

The fat-tailed Dunnart (Sminthopsis crassicaudata) is a small (10-20g) native marsupial endemic to the south west of Western Australia. Currently little is known about the auditory capabilities of the dunnart, and of marsupials in general. Consequently, this study sought to investigate several electrophysiological and anatomical properties of the dunnart auditory system. Auditory brainstem responses (ABR) were recorded to brief (5ms) tone pips at a range of frequencies (4-47.5 kHz) and intensities to determine auditory brainstem thresholds. The dunnart ABR displayed multiple distinct peaks at all test frequencies, similar to other mammalian species. ABR showed the dunnart is most sensitive to higher frequencies increasing up to 47.5 kHz. Morphological observations (Nissl stain) revealed that the auditory structures thought to contribute to the first peaks of the ABR were all distinguishable in the dunnart. Structures identified include the dorsal and ventral subdivisions of the cochlear nucleus, including a cochlear nerve root nucleus as well as several distinct nuclei in the superior olivary complex, such as the medial nucleus of the trapezoid body, lateral superior olive and medial superior olive. This study is the first to show functional and anatomical aspects of the lower part of the auditory system in the Fat-tailed Dunnart.


2019 ◽  
Author(s):  
Andrew Garrett ◽  
Virginia Lannigan ◽  
Nathanael Yates ◽  
Jennifer Rodger ◽  
Wilhelmina Mulders

The fat-tailed Dunnart (Sminthopsis crassicaudata) is a small (10-20g) native marsupial endemic to the south west of Western Australia. Currently little is known about the auditory capabilities of the dunnart, and of marsupials in general. Consequently, this study sought to investigate several electrophysiological and anatomical properties of the dunnart auditory system. Auditory brainstem responses (ABR) were recorded to brief (5ms) tone pips at a range of frequencies (4-47.5 kHz) and intensities to determine auditory brainstem thresholds. The dunnart ABR displayed multiple distinct peaks at all test frequencies, similar to other mammalian species. ABR showed the dunnart is most sensitive to higher frequencies increasing up to 47.5 kHz. Morphological observations (Nissl stain) revealed that the auditory structures thought to contribute to the first peaks of the ABR were all distinguishable in the dunnart. Structures identified include the dorsal and ventral subdivisions of the cochlear nucleus, including a cochlear nerve root nucleus as well as several distinct nuclei in the superior olivary complex, such as the medial nucleus of the trapezoid body, lateral superior olive and medial superior olive. This study is the first to show functional and anatomical aspects of the lower part of the auditory system in the Fat-tailed Dunnart.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7773
Author(s):  
Andrew Garrett ◽  
Virginia Lannigan ◽  
Nathanael J. Yates ◽  
Jennifer Rodger ◽  
Wilhelmina Mulders

The fat-tailed dunnart (Sminthopsis crassicaudata) is a small (10–20 g) native marsupial endemic to the south west of Western Australia. Currently little is known about the auditory capabilities of the dunnart, and of marsupials in general. Consequently, this study sought to investigate several electrophysiological and anatomical properties of the dunnart auditory system. Auditory brainstem responses (ABR) were recorded to brief (5 ms) tone pips at a range of frequencies (4–47.5 kHz) and intensities to determine auditory brainstem thresholds. The dunnart ABR displayed multiple distinct peaks at all test frequencies, similar to other mammalian species. ABR showed the dunnart is most sensitive to higher frequencies increasing up to 47.5 kHz. Morphological observations (Nissl stain) revealed that the auditory structures thought to contribute to the first peaks of the ABR were all distinguishable in the dunnart. Structures identified include the dorsal and ventral subdivisions of the cochlear nucleus, including a cochlear nerve root nucleus as well as several distinct nuclei in the superior olivary complex, such as the medial nucleus of the trapezoid body, lateral superior olive and medial superior olive. This study is the first to show functional and anatomical aspects of the lower part of the auditory system in the Fat-tailed dunnart.


1997 ◽  
Vol 77 (3) ◽  
pp. 1553-1565 ◽  
Author(s):  
Benedikt Grothe ◽  
Thomas J. Park ◽  
Gerd Schuller

Grothe, Benedikt, Thomas J. Park, and Gerd Schuller. Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. J. Neurophysiol. 77: 1553–1565, 1997. In mammals with good low-frequency hearing and a moderate to large interear distance, neurons in the medial superior olive (MSO) are sensitive to interaural time differences (ITDs). Most small mammals, however, do not hear low frequencies and do not experience significant ITDs, suggesting that their MSOs participate in functions other than ITD coding. In one bat species, the mustached bat, the MSO is a functionally monaural nucleus, acting as a low-pass filter for the rate of sinusoidally amplitude-modulated (SAM) stimuli. We investigated whether the more typical binaural MSO of the Mexican free-tailed bat also acts as an SAM filter. We recorded from 60 MSO neurons with their best frequencies covering the entire audiogram of this bat. The majority revealed bilateral excitation and indirect evidence for inhibition (EI/EI; 55%). The remaining neurons exhibited reduced inputs, mostly lacking ipsilateral inputs (28% I/EI; 12% O/EI; 5% EI/O). Most neurons (64%) responded with a phasic discharge to pure tones; the remaining neurons exhibited an additional sustained component. For stimulation with pure tones, two thirds of the cells exhibited monotonic rate-level functions for ipsilateral, contralateral, or binaural stimulation. In contrast, nearly all neurons exhibited nonmonotonic rate-level functions when tested with SAM stimuli. Eighty-eight percent of the neurons responded with a phase-locked discharge to SAM stimuli at low modulation rates and exhibited low-pass filter characteristics in the modulation transfer function (MTF) for ipsilateral, contralateral, and binaural stimulation. The MTF for ipsilateral stimulation usually did not match that for contralateral stimulation. Introducing interaural intensity differences (IIDs) changed the MTF in unpredictable ways. We also found that responses to SAMs depended on the carrier frequency. In some neurons we measured the time course of the ipsilaterally and contralaterally evoked inhibition by presenting brief frequency-modulated sweeps at different ITDs. The duration and timing of inhibition could be related to the SAM cutoff for binaural stimulation. We conclude that the response of the MSO in the free-tailed bat is created by a complex interaction of inhibition and excitation. The different time constants of inputs create a low-pass filter for SAM stimuli. However, the MSO output is an integrated response to the temporal structure of a stimulus as well as its azimuthal position, i.e., IIDs. There are no in vivo results concerning filter characteristics in a “classical” MSO, but our data confirm an earlier speculation about this interdependence based on data accessed from a gerbil brain slice preparation.


2003 ◽  
Vol 23 (19) ◽  
pp. 7438-7449 ◽  
Author(s):  
Douglas L. Oliver ◽  
Gretchen E. Beckius ◽  
Deborah C. Bishop ◽  
William C. Loftus ◽  
Ranjan Batra

Sign in / Sign up

Export Citation Format

Share Document