scholarly journals Positive solutions of the prescribed mean curvature equation with exponential critical growth

Author(s):  
Giovany M. Figueiredo ◽  
Vicenţiu D. Rădulescu

AbstractIn this paper, we are concerned with the problem $$\begin{aligned} -\text{ div } \left( \displaystyle \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = f(u) \ \text{ in } \ \Omega , \ \ u=0 \ \text{ on } \ \ \partial \Omega , \end{aligned}$$ - div ∇ u 1 + | ∇ u | 2 = f ( u ) in Ω , u = 0 on ∂ Ω , where $$\Omega \subset {\mathbb {R}}^{2}$$ Ω ⊂ R 2 is a bounded smooth domain and $$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$$ f : R → R is a superlinear continuous function with critical exponential growth. We first make a truncation on the prescribed mean curvature operator and obtain an auxiliary problem. Next, we show the existence of positive solutions of this auxiliary problem by using the Nehari manifold method. Finally, we conclude that the solution of the auxiliary problem is a solution of the original problem by using the Moser iteration method and Stampacchia’s estimates.

Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2004 ◽  
Vol 4 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Patrick Habets ◽  
Pierpaolo Omari

AbstractThe existence of positive solutions is proved for the prescribed mean curvature problemwhere Ω ⊂ℝ


2021 ◽  
Vol 11 (1) ◽  
pp. 598-619
Author(s):  
Guofeng Che ◽  
Tsung-fang Wu

Abstract We study the following Kirchhoff type equation: − a + b ∫ R N | ∇ u | 2 d x Δ u + u = k ( x ) | u | p − 2 u + m ( x ) | u | q − 2 u     in     R N , $$\begin{equation*}\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u+u =k(x)|u|^{p-2}u+m(x)|u|^{q-2}u~~\text{in}~~\mathbb{R}^{N}, \end{array} \end{equation*}$$ where N=3, a , b > 0 $ a,b \gt 0 $ , 1 < q < 2 < p < min { 4 , 2 ∗ } $ 1 \lt q \lt 2 \lt p \lt \min\{4, 2^{*}\} $ , 2≤=2N/(N − 2), k ∈ C (ℝ N ) is bounded and m ∈ L p/(p−q)(ℝ N ). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding H 1 ( R N ) ↪ L r ( R N ) ( 2 ≤ r < 2 ∗ ) $ H^{1}(\mathbb{R}^{N})\hookrightarrow L^{r}(\mathbb{R}^{N}) (2\leq r \lt 2^{*}) $ ; then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.


2019 ◽  
Vol 17 (1) ◽  
pp. 1055-1064 ◽  
Author(s):  
Jiaoxiu Ling ◽  
Zhan Zhou

Abstract In this paper, by using critical point theory, we obtain some sufficient conditions on the existence of infinitely many positive solutions of the discrete Dirichlet problem involving the mean curvature operator. We show that the suitable oscillating behavior of the nonlinear term near at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions. We also give two examples to illustrate our main results.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-676 ◽  
Author(s):  
Xiao-Jing Zhong ◽  
Chun-Lei Tang

AbstractIn this paper, we investigate a class of Kirchhoff type problems in {\mathbb{R}^{3}} involving a critical nonlinearity, namely,-\biggl{(}1+b\int_{\mathbb{R}^{3}}\lvert\nabla u|^{2}\,dx\biggr{)}\triangle u=% \lambda f(x)u+|u|^{4}u,\quad u\in D^{1,2}(\mathbb{R}^{3}),where {b>0}, {\lambda>\lambda_{1}} and {\lambda_{1}} is the principal eigenvalue of {-\triangle u=\lambda f(x)u}, {u\in D^{1,2}(\mathbb{R}^{3})}. We prove that there exists {\delta>0} such that the above problem has at least two positive solutions for {\lambda_{1}<\lambda<\lambda_{1}+\delta}. Furthermore, we obtain the existence of ground state solutions. Our tools are the Nehari manifold and the concentration compactness principle. This paper can be regarded as an extension of Naimen’s work [21].


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Ruyun Ma ◽  
Lingfang Jiang

We consider the existence of positive solutions of one-dimensional prescribed mean curvature equation−(u′/1+u′2)′=λf(u),0<t<1,u(t)>0,t∈(0,1),u(0)=u(1)=0whereλ>0is a parameter, andf:[0,∞)→[0,∞)is continuous. Further, whenfsatisfiesmax{up,uq}≤f(u)≤up+uq,0<p≤q<+∞, we obtain the exact number of positive solutions. The main results are based upon quadrature method.


Sign in / Sign up

Export Citation Format

Share Document