The action of Young subgroups on the partition complex
AbstractWe study the restrictions, the strict fixed points, and the strict quotients of the partition complex $|\Pi_{n}|$ | Π n | , which is the $\Sigma_{n}$ Σ n -space attached to the poset of proper nontrivial partitions of the set $\{1,\ldots,n\}$ { 1 , … , n } .We express the space of fixed points $|\Pi_{n}|^{G}$ | Π n | G in terms of subgroup posets for general $G\subset \Sigma_{n}$ G ⊂ Σ n and prove a formula for the restriction of $|\Pi_{n}|$ | Π n | to Young subgroups $\Sigma_{n_{1}}\times \cdots\times \Sigma_{n_{k}}$ Σ n 1 × ⋯ × Σ n k . Both results follow by applying a general method, proven with discrete Morse theory, for producing equivariant branching rules on lattices with group actions.We uncover surprising links between strict Young quotients of $|\Pi_{n}|$ | Π n | , commutative monoid spaces, and the cotangent fibre in derived algebraic geometry. These connections allow us to construct a cofibre sequence relating various strict quotients $|\Pi_{n}|^{\diamond} \mathbin {\operatorname* {\wedge }_{\Sigma_{n}}^{}} (S^{\ell})^{\wedge n}$ | Π n | ⋄ ∧ Σ n ( S ℓ ) ∧ n and give a combinatorial proof of a splitting in derived algebraic geometry.Combining all our results, we decompose strict Young quotients of $|\Pi_{n}|$ | Π n | in terms of “atoms” $|\Pi_{d}|^{\diamond} \mathbin {\operatorname* {\wedge }_{\Sigma_{d}}^{}} (S^{\ell})^{\wedge d}$ | Π d | ⋄ ∧ Σ d ( S ℓ ) ∧ d for $\ell$ ℓ odd and compute their homology. We thereby also generalise Goerss’ computation of the algebraic André-Quillen homology of trivial square-zero extensions from $\mathbf {F}_{2}$ F 2 to $\mathbf {F}_{p}$ F p for $p$ p an odd prime.