scholarly journals Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction

2016 ◽  
Vol 29 (6) ◽  
pp. 706-715 ◽  
Author(s):  
Xiaoying Song ◽  
Qijun Huang ◽  
Sheng Chang ◽  
Jin He ◽  
Hao Wang
2014 ◽  
Vol 39 (8) ◽  
pp. 1289-1294
Author(s):  
Jian GAO ◽  
Jun RAO ◽  
Rui-Peng SUN

2014 ◽  
Vol 926-930 ◽  
pp. 1751-1754
Author(s):  
Hong Mei Song ◽  
Hai Wei Mu ◽  
Dong Yan Zhao

A progressive transmission and decoding nearly lossless compression algorithm is proposed. The image data are grouped according to different frequencies based on DCT transform, then it uses the JPEG-LS core algorithmtexture prediction and Golomb coding on each group of data, in order to achieve progressive image transmission and decoding. Experimentation on the standard test images with this algorithm and comparing with JPEG-LS shows that the compression ratio of this algorithm is very similar to the compression ratio of JPEG-LS, and this algorithm loses a little image information but it has the ability of the progressive transmission and decoding.


Author(s):  
Urvashi Sharma ◽  
Meenakshi Sood ◽  
Emjee Puthooran

The proposed block-based lossless coding technique presented in this paper targets at compression of volumetric medical images of 8-bit and 16-bit depth. The novelty of the proposed technique lies in its ability of threshold selection for prediction and optimal block size for encoding. A resolution independent gradient edge detector is used along with the block adaptive arithmetic encoding algorithm with extensive experimental tests to find a universal threshold value and optimal block size independent of image resolution and modality. Performance of the proposed technique is demonstrated and compared with benchmark lossless compression algorithms. BPP values obtained from the proposed algorithm show that it is capable of effective reduction of inter-pixel and coding redundancy. In terms of coding efficiency, the proposed technique for volumetric medical images outperforms CALIC and JPEG-LS by 0.70 % and 4.62 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document