Integrity monitoring-based ambiguity validation for triple-carrier ambiguity resolution

GPS Solutions ◽  
2016 ◽  
Vol 21 (2) ◽  
pp. 797-810 ◽  
Author(s):  
Liang Li ◽  
Chun Jia ◽  
Lin Zhao ◽  
Fuxin Yang ◽  
Zishen Li
GPS Solutions ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 573-585 ◽  
Author(s):  
Liang Li ◽  
Zishen Li ◽  
Hong Yuan ◽  
Liang Wang ◽  
Yanqing Hou

2020 ◽  
Vol 12 (7) ◽  
pp. 1173 ◽  
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Chris Rizos ◽  
Jinling Wang

Integrity monitoring is an essential task for ensuring the safety of positioning services. Under a selected probability of hazardous misleading information, the protection levels (PLs) are computed according to a considered threat model to bound the positioning errors. A warning message is sent to users when the PL exceeds a pre-set alert limit (AL). In the short-baseline real-time relative kinematic positioning, the spatially correlated errors, such as the the orbital errors and the atmospheric delays are significantly reduced. However, the remaining atmospheric residuals and the multipath that are not considered in the observation model could directly bias the positioning results. In this contribution, these biases are analysed with the focus put on the multipath effects in different measurement environments. A new observation weighting model considering both the elevation angle and the signal-to-noise ratios is developed and their impacts on the positional results are investigated. The coefficients of the proposed weighting model are determined for the open-sky and the suburban scenarios with the positional benefits maximised. Next, the overbounding excess-mass cumulative distribution functions (EMCs) are searched on the between-receiver level for the weighted phase and code observations in these two scenarios. Based on the mean and standard deviations of these EMCs, horizontal protection levels (HPLs) are computed for the ambiguity-fixed solutions of real experiments. The HPLs are compared with the horizontal positioning errors (HPEs) and the horizontal ALs (HALs). Using the sequential exclusion algorithm developed for the ambiguity resolution in this contribution, the full ambiguity resolution can be achieved in around 100% and 95% of the time for the open-sky and the suburban scenarios, respectively. The corresponding HPLs of the ambiguity-fixed solutions are at the sub-dm to dm-level for both scenarios, and all the valid ambiguity-fixed HPLs are below a HAL of 0.5 m. For the suburban scenario with more complicated multipath environments, the HPLs increase by considering extra biases to account for multipath under a certain elevation threshold. In complicated multipath environments, when this elevation threshold is set to 30 degrees, the availability of the ambiguity-fixed solutions could decrease to below 50% for applications requiring HAL as low as 0.1 m.


2011 ◽  
Vol 65 (1) ◽  
pp. 41-58 ◽  
Author(s):  
Shaojun Feng ◽  
Washington Ochieng ◽  
Jaron Samson ◽  
Michel Tossaint ◽  
Manuel Hernandez-Pajares ◽  
...  

The determination of the correct integer number of carrier cycles (integer ambiguity) is the key to high accuracy positioning with carrier phase measurements from Global Navigation Satellite Systems (GNSS). There are a number of current methods for resolving ambiguities including the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method, which is a combination of least-squares and a transformation to reduce the search space. The current techniques to determine the level of confidence (integrity) of the resolved ambiguities (i.e. ambiguity validation), usually involve the construction of test statistics, characterisation of their distribution and definition of thresholds. Example tests applied include ratio, F-distribution, t-distribution and Chi-square distribution. However, the assumptions that underpin these tests have weaknesses. These include the application of a fixed threshold for all scenarios, and therefore, not always able to provide an acceptable integrity level in the computed ambiguities. A relatively recent technique referred to as Integer Aperture (IA) based on the ratio test with a large number of simulated samples of float ambiguities requires significant computational resources. This precludes the application of IA in real time.This paper proposes and demonstrates the power of an integrity monitoring technique that is applied at the ambiguity resolution and positioning stages. The technique has the important benefit of facilitating early detection of any potential threat to the position solution, originating in the ambiguity space, while at the same time giving overall protection in the position domain based on the required navigation performance. The proposed method uses the conventional test statistic for ratio testing together with a doubly non-central F distribution to compute the level of confidence (integrity) of the ambiguities. Specifically, this is determined as a function of geometry and the ambiguity residuals from least squares based ambiguity resolution algorithms including LAMBDA. A numerical method is implemented to compute the level of confidence in real time.The results for Precise Point Positioning (PPP) with simulated and real data demonstrate the power and efficiency of the proposed method in monitoring both the integrity of the ambiguity computation and position solution processes. Furthermore, due to the fact that the method only requires information from least squares based ambiguity resolution algorithms, it is easily transferable to conventional Real Time Kinematic (RTK) positioning.


2010 ◽  
Vol 63 (2) ◽  
pp. 215-231 ◽  
Author(s):  
Livio Gratton ◽  
Mathieu Joerger ◽  
Boris Pervan

The concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) using time differential carrier phase measurements is investigated in this paper. The precision of carrier phase measurements allows for mitigation of integrity hazards by implementing RRAIM monitors with tight thresholds without significantly affecting continuity. In order to avoid the need for cycle ambiguity resolution, time differences in carrier phase measurements are used as the basis for detection. In this work, we examine RRAIM within the context of the GNSS Evolutionary Architecture Study (GEAS), which explores potential architectures for aircraft navigation utilizing the satellite signals available in the mid-term future with GPS III. The objectives of the GEAS are focused on system implementations providing worldwide coverage to satisfy LPV-200 operations, and potentially beyond. In this work, we study two different GEAS implementations of RRAIM. General formulas are derived for positioning, fault detection, and protection level generation to meet a given set of integrity and continuity requirements.


2009 ◽  
Author(s):  
Brianna M. Eiter ◽  
Kristin M. Weingartner ◽  
David S. Gorfein ◽  
Vincent R. Brown
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document