Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia

2009 ◽  
Vol 14 (6) ◽  
pp. 365-372 ◽  
Author(s):  
Tanaka Kenzo ◽  
Ryo Furutani ◽  
Daisuke Hattori ◽  
Joseph Jawa Kendawang ◽  
Sota Tanaka ◽  
...  
2000 ◽  
Vol 48 (6) ◽  
pp. 707 ◽  
Author(s):  
W. H. Burrows ◽  
M. B. Hoffmann ◽  
J. F. Compton ◽  
P. V. Back ◽  
L. J. Tait

Allometric equations are presented relating stem circumference to branch, leaf, trunk, bark, total above-ground and lignotuber biomass for Eucalyptus crebra F.Muell. (woodland trees), E. melanophloia Sol. Ex Gaerth. (both woodland and regrowth community trees) and E. populnea F.Muell. (woodland trees). There were no significant differences (P > 0.05) between the slopes of individual lognormal regression lines plotting stem circumference against total above-ground biomass for E. crebra, E. melanophloia and E. populnea. Root-to-shoot ratios and leaf area indices were also determined for the stands contributing to each regression. The regressions were then applied to measured eucalypt stems in the associated plant community to give estimates of each stand’s component (eucalypt tree fraction only) biomass per hectare. These eucalypt regressions were next applied to measured stems of each species on a total of 33 woodland sites in which these eucalypts individually contributed > 75% of total site basal area. Above-ground biomass/basal area relationships averaged 6.74 0.29 t m–2 basal area for 11 E. crebra sites, 5.11 0.28 t m–2 for 12 E. melanophloia sites and 5.81 0.11 t m–2 for 10 E. populnea sites. The mean relationship for all sites was 5.86 0.18 t m–2 basal area. The allometric relationships presented at both individual tree and stand levels, along with calculated biomass : basal area relationships, enable ready estimates to be made of above-ground biomass (carbon stocks) in woodlands dominated by these eucalypts in Queensland, assuming individual stem circumferences or community basal areas are known. However, to document changes in carbon stocks (e.g. for Greenhouse Gas Inventory or Carbon Offset trading purposes), more attention needs to be placed on monitoring fluxes in the independent variables (predictors) of these allometric equations.


2020 ◽  
Vol 13 (1) ◽  
pp. 165-174
Author(s):  
R Puc-Kauil ◽  
G Ángeles-Pérez ◽  
JR Valdéz-Lazalde ◽  
VJ Reyes-Hernández ◽  
JM Dupuy-Rada ◽  
...  

Author(s):  
J. J. Guerra-Santos ◽  
R. M. Cerón ◽  
J. G. Cerón ◽  
A. Alderete-Chávez ◽  
D. L. Damián-Hernández ◽  
...  

2013 ◽  
Vol 310 ◽  
pp. 483-494 ◽  
Author(s):  
Keryn I. Paul ◽  
Stephen H. Roxburgh ◽  
Jacqueline R. England ◽  
Peter Ritson ◽  
Trevor Hobbs ◽  
...  

2015 ◽  
Vol 90 (6) ◽  
pp. 1061-1076 ◽  
Author(s):  
T. L. Beedy ◽  
T. F. Chanyenga ◽  
F. K. Akinnifesi ◽  
G. W. Sileshi ◽  
B. I. Nyoka ◽  
...  

Author(s):  
Mamadou Laminou Mal Amadou ◽  
Halilou Ahmadou ◽  
Ahmadou Ibrahim ◽  
Tchindebe Alexandre ◽  
Massai Tchima Jacob ◽  
...  

Little information on allometric relationships for estimating stand biomass in the savannah of Cameroon was available. Allometric relationships for estimating stand biomass were investigated in the sudano-guinea savannah of Ngaoundere, Cameroon. A total of 90 individual woody from sixteen (16) contrasting plant species belonging shrubs and trees were harvested in Dang savannah across a range of diameter classes, from 3 to 35 cm. Basal diameter (D), total height (H) and tree density were determined and considered as predictor variables, while total above-ground biomass, stem, branch and leaf biomass were the output variables of the allometric models. Among many models tested, the best ones were chosen according to the coefficient of determination adjusted (R2adj), the residual standard error (RSE) and the Akaike Information Criteria. The main results showed that the integration of tree height and density with basal diameter improved in the degree of fitness of the allometric equations. The fit allometric stand biomass model for leaf, branch, stem and above ground biomass were the following forms: Ln(LB) = -5.08 + 2.75*Ln(D) – 0.30*Ln(D2Hρ); Ln(BB) = -7.81 + 1.29*Ln(D2H) – 0.39*Ln(ρ); Ln(SB) = -5.08 + 2.40*Ln(D) +0.50*Ln(H) and Ln(TB) = -5.07 + 3.21*Ln(D) – 0.12*Ln(D2Hρ) respectively. It is concluded that the use of tree height and density in the allometric equation can be improved for these species, as far as the present study area is concerned. Therefore, for estimating the biomass of shrubs and small trees, the use of basal diameter as an independent variable in the allometric equation with a power equation would be recommended in the Sudano-guinea savannahs of Ngaoundere, Cameroon. The paper describes details of shrub biomass allometry, which is important in carbon stock and savannah management for the environmental protection.


Sign in / Sign up

Export Citation Format

Share Document