tree height
Recently Published Documents


TOTAL DOCUMENTS

1610
(FIVE YEARS 546)

H-INDEX

61
(FIVE YEARS 10)

HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 200-201
Author(s):  
Ed Stover ◽  
Stephen Mayo ◽  
Randall Driggers ◽  
Robert C. Adair

The U.S. Department of Agriculture citrus scion breeding program is urgently working on developing huanglongbing (HLB; pathogen Candidatus Liberibacter asiaticus)-tolerant cultivars with excellent fruit quality and productivity when HLB-affected. The slow process of assessing new citrus hybrids is a major impediment to delivery of these much-needed cultivars. We generate thousands of hybrids each year, germinate the seedlings, grow them for 2 years in the greenhouse, plant them at high density in a field where the disease HLB is abundant, grow them for 5 to 10 years, and make selections based on tree performance and fruit quality of these HLB-affected trees. Based on promising reports of accelerated citrus growth when grown in a metallized reflective mulch (MRM) system, we tested the hypothesis that the MRM system may accelerate growth and selection of new hybrid seedlings compared with conventional soil culture (CSC). In the MRM system, tree rows are covered with a layer of metallized plastic film and drip irrigation is installed beneath the plastic. In 2 years of analysis, tree canopy volume was significantly greater with MRM in 2020 (27% greater than CSC) but not in 2021, and MRM tree height was greater in 2021 (7% greater than CSC). Mortality was significantly greater with MRM in both 2020 and 2021(in 2021: 32% vs. 17% under CSC), and MRM trees had more chlorotic leaves. Because of staff limitations, plant debris and soil were not routinely cleared from MRM, thus diminishing any benefit from the reflective surface. Better maintenance might have resulted in more sustained evidence of MRM growth benefits. With the current resource availability, the MRM system does not appear to accelerate the assessment of hybrid seedling trees.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Simone Vongkhamho ◽  
Akihiro Imaya ◽  
Kazukiyo Yamamoto ◽  
Chisato Takenaka ◽  
Hiroyuki Yamamoto

Teak is a globally valuable hardwood tree species, as its growth performance is important for timber productivity. The purpose of this study was to establish an effective management system for teak plantations in the Lao PDR. Using diameter at breast height (DBH) and height growth as significant indicators of growth performance, we investigated the relationship between tree growth curve parameters of teak and topographic conditions. Stem analysis data for 81 sample trees (three trees selected in canopy trees with predominant height in each plot) were examined for growth performance using the Mitscherlich growth function. The results of Spearman’s partial rank correlation indicated that the upper limits of DBH and tree height growth had significant negative correlations with the slope gradient and stand density. The curvature of DBH and tree height growth curves showed significant positive correlations with the slope form. Moreover, the elevation and slope gradient showed significant negative correlations with the curvature of tree height growth curve. However, the time lag of DBH growth showed a significant negative correlation with the slope position, while the slope gradient was positively correlated with the time lag of tree height growth. These results suggest that teak planted at lower slopes has faster growth rates and that there is an interaction with the gentle concave slope of this area.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Diego Rodríguez de Prado ◽  
Jose Riofrío ◽  
Jorge Aldea ◽  
Felipe Bravo ◽  
James McDermott ◽  
...  

Estimating tree height is essential for modelling and managing both pure and mixed forest stands. Although height–diameter (H–D) relationships have been traditionally fitted for pure stands, attention must be paid when analyzing this relationship behavior in stands composed of more than one species. The present context of global change makes also necessary to analyze how this relationship is influenced by climate conditions. This study tends to cope these gaps, by fitting new H–D models for 13 different Mediterranean species in mixed forest stands under different mixing proportions along an aridity gradient in Spain. Using Spanish National Forest Inventory data, a total of 14 height–diameter equations were initially fitted in order to select the best base models for each pair species-mixture. Then, the best models were expanded including species proportion by area (mi) and the De Martonne Aridity Index (M). A general trend was found for coniferous species, with taller trees for the same diameter size in pure than in mixed stands, being this trend inverse for broadleaved species. Regarding aridity influence on H–D relationships, humid conditions seem to beneficiate tree height for almost all the analyzed species and species mixtures. These results may have a relevant importance for Mediterranean coppice stands, suggesting that introducing conifers in broadleaves forests could enhance height for coppice species. However, this practice only should be carried out in places with a low probability of drought. Models presented in our study can be used to predict height both in different pure and mixed forests at different spatio-temporal scales to take better sustainable management decisions under future climate change scenarios.


2022 ◽  
Author(s):  
Laura Morales ◽  
Kelly Swarts

We leveraged publicly available data on juvenile tree height of 299 Central European Norway spruce populations grown in a common garden experiment across 24 diverse trial locations in Austria and weather data from the trial locations and population provenances to parse the heritable and climatic components of tree height variation. Principal component analysis of geospatial and weather variables demonstrated high interannual variation among trial environments, largely driven by differences in precipitation, and separation of population provenances based on altitude, temperature, and snowfall. Tree height was highly heritable and genetic variation for tree height was strongly associated with climatic relationships among population provenances. Modeling the covariance between populations and trial environments based on climatic data increased the heritable signal for tree height.


2022 ◽  
Vol 14 (2) ◽  
pp. 298
Author(s):  
Kaisen Ma ◽  
Zhenxiong Chen ◽  
Liyong Fu ◽  
Wanli Tian ◽  
Fugen Jiang ◽  
...  

Using unmanned aerial vehicles (UAV) as platforms for light detection and ranging (LiDAR) sensors offers the efficient operation and advantages of active remote sensing; hence, UAV-LiDAR plays an important role in forest resource investigations. However, high-precision individual tree segmentation, in which the most appropriate individual tree segmentation method and the optimal algorithm parameter settings must be determined, remains highly challenging when applied to multiple forest types. This article compared the applicability of methods based on a canopy height model (CHM) and a normalized point cloud (NPC) obtained from UAV-LiDAR point cloud data. The watershed algorithm, local maximum method, point cloud-based cluster segmentation, and layer stacking were used to segment individual trees and extract the tree height parameters from nine plots of three forest types. The individual tree segmentation results were evaluated based on experimental field data, and the sensitivity of the parameter settings in the segmentation methods was analyzed. Among all plots, the overall accuracy F of individual tree segmentation was between 0.621 and 1, the average RMSE of tree height extraction was 1.175 m, and the RMSE% was 12.54%. The results indicated that compared with the CHM-based methods, the NPC-based methods exhibited better performance in individual tree segmentation; additionally, the type and complexity of a forest influence the accuracy of individual tree segmentation, and point cloud-based cluster segmentation is the preferred scheme for individual tree segmentation, while layer stacking should be used as a supplement in multilayer forests and extremely complex heterogeneous forests. This research provides important guidance for the use of UAV-LiDAR to accurately obtain forest structure parameters and perform forest resource investigations. In addition, the methods compared in this paper can be employed to extract vegetation indices, such as the canopy height, leaf area index, and vegetation coverage.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Yifan Song ◽  
Ge Yan ◽  
Guangfu Zhang

In the process of subtropical forest succession, it has long been recognized that population decline of Masson pines in coniferous-broadleaf mixed forest is caused by shading from broadleaf trees. However, little is known about the mechanism underlying the interaction between them. Here, we first chose two sets of Masson pine plots approximately aged 60 years in subtropical mountainous areas in eastern China (i.e., pure coniferous forest vs. coniferous-broadleaf mixed forest). Then, we measured and compared tree height, diameter at breast height, first branch height (FBH), live crown ratio (LCR) of Masson pines between the two sets of plots, and also determined the difference in growth performance of Masson pines relative to their neighboring broadleaf trees in the mixed forest stand. Compared with plots in pine forests, Masson pines in mixed plots had lower tree height and crown breadth, higher FBH, lower LCR, and leaf area. Furthermore, the difference of mean FBH between reference trees (Masson pines) and their neighboring trees (i.e., broadleaf trees) in mixed forest plots was greater than that in pine forest plots, and the ratio of LCR between Masson pines and their neighbors (0.46) in mixed forest was significantly smaller than in pine forest (1.05), indicating that those broadleaf trees around Masson pines probably affected their growth. The mean distance between Masson pines and neighboring trees (1.59 m) in mixed forest plots was significantly shorter than in pine forest plots (2.77 m) (p < 0.01), suggesting that strong competition may occur between reference trees and their neighbors. There was a significant difference in the ratio of crown volume between reference tree Masson pine and its neighboring trees in mixed forests (p < 0.01), indicating that the ratio of biomass synthesis to consumption of pines was much lower than their nearby broadleaf trees in mixed forest. Our results have demonstrated for the first time that Masson pines’ population decline is affected by shade-tolerant broadleaf late-successional species, which can be primarily attributed to the distinctive light transmittance of dominant species nearby (pure pine vs. mixed forest). This study provides a new perspective for future studies on the mechanism of forest succession.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Girma Ayele Bedane ◽  
Gudina Legese Feyisa ◽  
Feyera Senbeta

Abstract Background The need for understanding spatial distribution of forest aboveground carbon density (ACD) has increased to improve management practices of forest ecosystems. This study examined spatial distribution of the ACD in the Harana Forest. A grid sampling technique was employed and three nested circular plots were established at each point where grids intersected. Forest-related data were collected from 1122 plots while the ACD of each plot was estimated using the established allometric equation. Environmental variables in raster format were downloaded from open sources and resampled into a spatial resolution of 30 m. Descriptive statistics were computed to summarize the ACD. A Random Forest classification model in the R-software package was used to select strong predictors, and to predict the spatial distribution of ACD. Results The mean ACD was estimated at 131.505 ton per ha in this study area. The spatial prediction showed that the high class of the ACD was confined to eastern and southwest parts of the Harana Forest. The Moran’s statistics depicted similar observations showing the higher clustering of ACD in the eastern and southern parts of the study area. The higher ACD clustering was linked with the higher species richness, species diversity, tree density, tree height, clay content, and SOC. Conversely, the lower ACD clustering in the Harana Forest was associated with higher soil cation exchange capacity, silt content, and precipitation. Conclusions The spatial distribution of ACD in this study area was mainly influenced by attributes of the forest stand and edaphic factors in comparison to topographic and climatic factors. Our findings could provide basis for better management and conservation of aboveground carbon storage in the Harana Forest, which may contribute to Ethiopia’s strategy of reducing carbon emission.


2022 ◽  
Author(s):  
Minhyung Jung ◽  
Jung-Wook Kho ◽  
Do-Hun Gook ◽  
Young Su Lee ◽  
Doo-Hyung Lee

Abstract The spotted lanternfly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae), has the potential to become a global pest and is currently expanding its range in the United States. In this study, we investigated the dispersal patterns of SLF in Ailanthus altissima during its oviposition period in South Korea using fluorescent marking system. Oviposition patterns of SLF were then analyzed by surveying egg masses in A. altissima patches. The recapture rate of fluorescent-marked SLF rapidly decreased < 30% within the first two weeks. During the oviposition period, seven cases of among-patch dispersal of SLF adults were observed with a minimum estimated dispersal distance mainly ranging between 10 - 60 m and a maximum of 1,740 m. Also, the number of A. altissima trees detected with fluorescent-marked SLF increased until late September. Based on the egg mass survey, a total of 159 egg masses were detected from 38 out of 247 A. altissima trees. Furthermore, ca. 80% of egg masses were located < 2.5 m above the ground. Finally, the number of egg masses showed significant positive correlations with the height and diameter at root collar of A. altissima trees; both tree height and DRC were significantly larger from the trees with egg masses.


Sign in / Sign up

Export Citation Format

Share Document