Biomass, and carbon and nitrogen pools in a subtropical evergreen broad-leaved forest in eastern China

2010 ◽  
Vol 15 (4) ◽  
pp. 274-282 ◽  
Author(s):  
Kai Zhang ◽  
Xiaoniu Xu ◽  
Qin Wang ◽  
Bo Liu
2020 ◽  
Vol 13 (6) ◽  
pp. 738-743
Author(s):  
Mide Rao ◽  
Duo Ye ◽  
Jianhua Chen ◽  
Jian Ni ◽  
Xiangcheng Mi ◽  
...  

Abstract Aims Multi-stemming supports plants’ resilience to disturbances and then contributes to soil stabilization and forest function, especially in mountain habitats. Many questions remain about (i) the ontogenetic phase at which multiple stems can occur, (ii) how habitat drivers affect multi-stemming and (iii) whether ontogenetic phase and habitat drivers interact. We asked these questions for Quercus glauca (ring-cupped oak), the dominant species and sprouter across large warm-temperate areas of Asia; its multi-stemmed trees reflect individual survival, population regeneration and forest ecosystem stability. Methods In a 5-ha permanent plot of subtropical evergreen broad-leaved forest in eastern China, we examined the temporal patterns and spatial distribution of multi-stemmed trees of Q. glauca within 99 quadrats of 20 m × 20 m. Important Findings There were three temporal modes for multi-stemming among the Q. glauca trees and most of them appeared to produce multiple stems from an early stage. Environmental disturbances related to slope convexity appear to be the main drivers of multi-stemming of Q. glauca. Moreover, the closer to the ridge, the earlier the multi-stemming occurs. Thus, also for other woody species in other forests and climate zones, ontogeny and environmental drivers promoting disturbance (not only geomorphology, but also extreme weather events, soil drought, fire), as well as soil fertility, need to be considered in combination to better understand multi-stemming and its consequences for community structure.


Soil Research ◽  
2012 ◽  
Vol 50 (4) ◽  
pp. 257 ◽  
Author(s):  
Shun Lei Peng ◽  
Jian Wu ◽  
Wen Hui You

Saturated hydraulic conductivity (Ks) can be used to indicate changes in soil hydrology resulting from vegetation succession. A constant-head permeameter was used to investigate differences in Ks at five soil depths (10, 20, 40, 60, and 80 cm) along a successional sequence of 155 years in evergreen broad-leaved forest at Tiantong National Forest Park, eastern China. The following six forest successional classes were studied: climax evergreen broad-leaved forest (CE), sub-climax evergreen broad-leaved forest (SE), evergreen broad-leaved mixed coniferous forest (MF), coniferous forest (CF), secondary shrub (SS), and abandoned land (AL). Surface Ks (the geometric mean of Ks at 10 and 20 cm soil depths) significantly increased from AL to CE but declined in CF. The surface Ks value under CE was higher than under other successional stages (CE 271 mm h–1, AL 58 mm h–1, SS 124 mm h–1, CF 90 mm h–1, MF 170 mm h–1, SE 231 mm h–1), and was 4.7 times greater than under AL, 2.2 times greater than under SS, and 3.0 times greater than under CF, but showed no significant difference from SE (P > 0.05). Vertical difference of Ks was detected up to a soil depth of 40 cm along forest successional series. Macroporosity was the main determining factor and played an important role in the process of Ks recovery. The likelihood of overland flow generation was inferred by comparing Ks at soil depths of 10, 20, 40, and 60 cm under the various successional stages at prevailing storm intensities. Overland flow was most likely to occur in the early successional stages. This study suggests that Ks could be restored to climax forest levels along forest successional series, but the recovery time could be as long as 95 years.


Author(s):  
Hui Wang ◽  
Bing Wang ◽  
Xiang Niu ◽  
Qingfeng Song ◽  
Haonan Bai ◽  
...  

We analyzed the plant-litter-soil continuum to investigate the carbon and nitrogen distribution and ecological stoichiometry of an evergreen broad-leaved forest at Dagangshan Mountain, Jiangxi. The results showed that the average C and N contents and C:N ratios in the leaves and fine roots among 6 different tree species were 401.87g/kg, 21.41g/kg, 19.27 and 348.64g/kg, 15.73g/kg, 23.97, respectively; the average C and N contents and C:N ratios were 323.06 g/kg, 12.76 g/kg, 25.58 respectively in leaf litter, and 16.40 g/kg, 1.09 g/kg, 16.27 respectively for soil. In contrast with the C content, the total N content of the fine roots and litter had a high coefficient of variation and a high spatial heterogeneity. We ranked the six different representative tree species according to total C and N content in leaves and fine roots. The results for each species were generally consistent with each other, showing a positive correlation relationship between total C and N content in the leaves and roots. Among them, S. discolor (Champ. ex Benth.) Muell. plants displayed high carbon and nitrogen storage capacities, and on the other hand, C. fargesii Franch., C. myrsinifolia (Blume) Oersted, A. fortunei (Hemsl.) Makino, and V. fordii (Hemsl.) Airy Shaw showed a high nitrogen transfer rate. Total soil N and C decreased with depth. Soil organic carbon (SOC), soil resistant organic carbon (ROC), total N, alkali nitrogen, NH4+-N and NO3--N contents were all also negative correlated with soil depth, but the contents of the NH4+-N and NO3--N did not change significantly; The spatial distribution of soil NO3--N was significantly heterogeneous. At 0-10 cm soil depth, SOC was positively correlated with alkaline nitrogen, and at 10-20 cm soil depth, SOC was significantly positively correlated with total N. In general, when soil carbon was abundant, nitrogen supply capacity was also high.


Sign in / Sign up

Export Citation Format

Share Document