n content
Recently Published Documents


TOTAL DOCUMENTS

793
(FIVE YEARS 209)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Dongqing Yang ◽  
Jihao Zhao ◽  
Chen Bi ◽  
Liuyin Li ◽  
Zhenlin Wang

Wheat growth and nitrogen (N) uptake gradually decrease in response to high NH4+/NO3– ratio. However, the mechanisms underlying the response of wheat seedling roots to changes in NH4+/NO3– ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH4+/NO3– ratios (Na: 100/0; Nr1: 75/25, Nr2: 50/50, Nr3: 25/75, and Nn: 0/100). High NH4+/NO3– ratio significantly reduced leaf relative chlorophyll content, Fv/Fm, and ΦII values. Both total root length and specific root length decreased with increasing NH4+/NO3– ratios. Moreover, the rise in NH4+/NO3– ratio significantly promoted O2– production. Furthermore, transcriptome sequencing and tandem mass tag-based quantitative proteome analyses identified 14,376 differentially expressed genes (DEGs) and 1,819 differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that glutathione metabolism and phenylpropanoid biosynthesis were the main two shared enriched pathways across ratio comparisons. Upregulated DEGs and DEPs involving glutathione S-transferases may contribute to the prevention of oxidative stress. An increment in the NH4+/NO3– ratio induced the expression of genes and proteins involved in lignin biosynthesis, which increased root lignin content. Additionally, phylogenetic tree analysis showed that both A0A3B6NPP6 and A0A3B6LM09 belong to the cinnamyl-alcohol dehydrogenase subfamily. Fifteen downregulated DEGs were identified as high-affinity nitrate transporters or nitrate transporters. Upregulated TraesCS3D02G344800 and TraesCS3A02G350800 were involved in ammonium transport. Downregulated A0A3B6Q9B3 is involved in nitrate transport, whereas A0A3B6PQS3 is a ferredoxin-nitrite reductase. This may explain why an increase in the NH4+/NO3– ratio significantly reduced root NO3–-N content but increased NH4+-N content. Overall, these results demonstrated that increasing the NH4+/NO3– ratio at the seedling stage induced the accumulation of reactive oxygen species, which in turn enhanced root glutathione metabolism and lignification, thereby resulting in increased root oxidative tolerance at the cost of reducing nitrate transport and utilization, which reduced leaf photosynthetic capacity and, ultimately, plant biomass accumulation.


Author(s):  
Yao Wang ◽  
Meng Zhou ◽  
Meng Hou ◽  
Yimin Chen ◽  
Yueyu Sui ◽  
...  

Maintaining nitrogen (N) balance and inhibiting N leaching loss in the soil-crop system is crucial to maintaining yield and reducing the environmental pollution. This study investigated the effects of soil NO<sub>3</sub><sup>−</sup>-N content and accumulation, eggplant yield, N leaching and balance response to biochar addition, including regular fertilisation and irrigation (W + F), biochar addition with regular fertilisation and irrigation (W + F + B), and biochar addition with 20% fertilisation and irrigation reduction (0.8W + 0.8F + B) treatments. Compared with W + F, W + F + B and 0.8W + 0.8F + B increased soil NO<sub>3</sub><sup>−</sup>-N content in 0–40 cm and soil NO<sub>3</sub><sup>−</sup>-N accumulation in 0–20 cm, and raised harvest index, N surplus and balance. Simultaneously, 0.8W + 0.8F + B compared to W + F enhanced N use efficiency and N partial factor productivity, conversely, it decreased N dry matter production efficiency, N surplus and balance. Stepwise regression analysis demonstrated that the effect of NO<sub>3</sub><sup>−</sup>-N leaching lasted in 60 cm under biochar addition in the first year, and lasted in 20 cm without biochar application in the next year. Altogether, biochar addition with 20% fertilisation and irrigation reduction is the most suitable management strategy to decrease N surplus and leaching, and maintain eggplant N uptake in a two-year cycle system on greenhouse vegetables in Mollisols.  


Author(s):  
Shixiang Ma ◽  
Lianbo Guo ◽  
Daming Dong

Nitrogen (N) content is a significant indicator for use in evaluating eutrophication. However, the conventional method, such as alkaline potassium persulfate digestion ultraviolet (UV) spectrophotometric or Kjeldahl method, always require...


Author(s):  
K. Arora ◽  
S. Verma

Background: Indian economy is largely based on agriculture. Major share of agricultural investments goes into chemical fertilizers. Nitrogen (N) fertilizers are used in fields to enhance the crop yield. Most of the reports are based on growth related data, morphological and yield related data but very few reports reveal the facts about genotoxic and cytotoxic effects of these fertilizers. Therefore, the present communication is an attempt in the aforesaid direction. Methods: In a pot experiment, mineral N content of soil in the form of ammonium-N (NH4+-N) and nitrate-N (NO3--N) were analysed at regular interval of 5 days till 30 days after treatment (DAT). On the corresponding days root tip assay was done for cytotoxic analyses and also the temporal changes in NH4+-N and NO3--N contents were observed. Result: In the Ammonium nitrate treatments, higher mitotic index (MI%) percentages were obtained. While for the Urea, NH4+-N content and MI were found to have a positive correlation. Also, it was found that there is an optimum ratio of NH4+-N and NO3--N in each treatment at which the MI% was the maximum. The study gives an interesting insight for the possible cytotoxic effects of the N fertilizers.


2021 ◽  
pp. 0734242X2110606
Author(s):  
Maliheh Fouladidorhani ◽  
Mohammad Shayannejad ◽  
Emmanuel Arthur

One of the approaches for recycling and reusing agricultural and animal wastes is to pyrolyse the residues and subsequently use them as soil amendments. The prevalence of several feedstocks suggests that it is necessary to investigate the optimal combinations of feedstocks and pyrolysis temperature for use as soil amendments. This study was done to evaluate five combinations of raw materials (sugarcane bagasse, rice husk, cow manure and pine wood) and their biochars produced by slow pyrolysis at 300°C and 500°C for soil amendment. Several physicochemical properties (electrical conductivity (EC), pH, cation exchange capacity (CEC), total organic matter content (C) total porosity (TP), total nitrogen (N), particle density (PD) and bulk density (BD)) were investigated. Comparison among feedstocks showed that the highest PD, BD and CEC were observed in WM (cow manure-pine wood). The pyrolysis process increased the PD, TP, N and monovalent cations and decreased EC, CEC and BD. Compared to the feedstock, pyrolysis increased the N content, but higher temperatures lowered the N content. Pyrolysis at 500°C reduced the EC, N, CEC and biochar yield by 18%, 13%, 21% and 24% respectively, compared to 300°C. Pyrolysis at 500°C increased the pH, Na+ and K+ by 17%, 12% and 22%, respectively, compared to 300°C. Considering the physicochemical properties of biochar and the costs, the bagasse-wood-rice (BWR) combination and temperature of 300°C are suggested for biochar production for soil amendment.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1571
Author(s):  
Ye Tao ◽  
Jishuang Zhang ◽  
Lian Song ◽  
Chuang Cai ◽  
Dongming Wang ◽  
...  

Nitrogen (N) has a unique place in agricultural systems with large requirements. To achieve optimal nitrogen management that meets the needs of agricultural systems without causing potential environmental risks, it is of great significance to increase N use efficiency (NUE) in agricultural systems. A chlorophyll meter, for example, the SPAD-502, can provide a simple, nondestructive, and quick method for monitoring leaf N status and NUE. However, the SPAD-based crop leaf’s N status varies greatly due to environmental factors such as CO2 concentration ([CO2]) or temperature variations. In this study, we conducted [CO2] (ambient and enriched up to 500 μmol moL1) and temperature (ambient and increased by 1.5~2.0 °C) controlled experiments from 2015 to 2017 and in 2020 in two Free-Air CO2 Enrichment (FACE) sites. Leaf characters (SPAD readings, chlorophyll a + b, N content, etc.) of seven rice cultivars were measured in this four year experiment. Here, we provide evidence that SPAD readings are significantly linearly correlated with rice leaf chlorophyll a + b content (chl a + b) and N content, while the relationships are profoundly affected by elevated [CO2] and warming. Under elevated [CO2] treatment (E), the relationship between chl a + b content and N content remains unchanged, but SPAD readings and chl a + b content show a significant difference to those under ambient (A) treatment, which distorts the SPAD-based N monitoring. Under warming (T), and combined elevated [CO2] and warming (ET) treatments, both of the relationships between SPAD and leaf a + b content and between leaf a + b content and N content show a significant difference to those under A treatment. To deal with this issue under the background of global climate change dominated by warming and elevated [CO2] in the future, we need to increase the SPAD reading’s threshold value by at least 5% to adjust for applying N fertilizer within the rice cropping system by mid-century.


Author(s):  
Hongyu Liu ◽  
Tao Wang ◽  
Xuefeng Guo ◽  
Feng Feng ◽  
Yunhai Su

Abstract In order to develop the Fe-Cr-Ni-Mo-Mn-N corrosion resistant alloys, analyze the influence of nitrogen on the corrosion resistance of Fe-Cr-Ni-Mo-Mn alloy, adjust the N content in the alloy system, and Flux cored wires with different N content were prepared. They were surfaced on low carbon steel by MIG welding. The phase composition, microstructure and corrosion resistance of the cladding metal were analyzed to studied the effect of N content on the structure and performance of the surfacing metal. The results show that the addition of nitrogen does not change the matrix structure (which is Fe-Ni-Cr austenite), but with the increase of nitrogen content, the precipitation of nitrides ( Cr2(C,N) and BN ) is


2021 ◽  
pp. 729-736
Author(s):  
Lei Shi ◽  
Zhong Zheng Liu ◽  
Liangyan Yang ◽  
Wangtao Fan

Problems of poor soil structure and nutrient deficiency in the reclamation of abandoned homesteads, and improvement of the soil condition after land reclamation to arable land and rapidly resume agricultural production were investigated. Organic fertilizers, curing agent and fly ash as amendment materials were selected. A plot test with seven different return materials in order to obtain the effects of different amendment materials on nutrient improvement in the reclamation of abandoned homestead soils in loess areas was conducted. After 3 years of maize crop cultivation, soil samples were collected and analyzed for total soil nitrogen content under different treatments. The results showed that the maize yield in each plot showed different additives contributed to the increase in maize yield to different degrees, while the addition of organic fertilizer had a more significant effect on the increase in yield. In the treatment of the experimental plots with the addition of curing agent + organic fertilizer, there was a significant effect on the enhancement of the content of total nitrogen in the soil tillage layer after three years of maize cultivation. The total N content of the surface soil (0~15 cm) increased from 0.32 to 0.64 g/kg, and that of the soil from 15~30 cm increased from 0.31 to 0.66 g/kg. The total N content of the soil from 0~60cm showed an increasing trend year by year, but the increase was gradually reduced. The total nitrogen content of soil in the depth of 60~105 cm showed a decreasing trend year by year. In the remediation of hollow villages in loess plateau, the compound application of organic fertilizer and ripening agent can significantly improve the soil nutrient content, condition of farmland and increase in maize yield, which is the most suitable material for field return in the remediation of hollow villages in loess plateau, and is of great significance to improve the quality of field return in the remediation of hollow villages. Bangladesh J. Bot. 50(3): 729-736, 2021 (September) Special


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


Sign in / Sign up

Export Citation Format

Share Document