nutrient resorption
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 50)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Baoming Du ◽  
Huawei Ji ◽  
Shirong Liu ◽  
Hongzhang Kang ◽  
Shan Yin ◽  
...  

Abstract Background Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities, which further impacts litter quality and nutrient cycling. However, the interannual variability of nutrient resorption under climate change remains unclear. Methods We investigated the five-year nutrient resorption efficiencies (NuRE, %) of 14 elements in three deciduous oak tree species (Quercus aliena var. acuteserrata, Q. glandulifera, and Q. variabilis) in a warm-temperate forest of Central China and assessed their relationships with interannual climate and soil factors. Results Nutrient resorption did not differ between species but varied significantly between different years. For each year, N, P, S, K, C, Mg, and Zn were preferentially resorbed in all of the oak species in contrast to Ca, Na, Mn, Ba, Al, Fe, Cu, which were to some extent discriminated. Among the 14 elements, the NuRE of C, N, P, S, Ca, and Mg was more sensitive to interannual climate variations in the three oak species. The carbon resorption efficiency was significantly increased during the driest year of the study (2014); N resorption efficiency was reduced with temperature; whereas N and P resorption efficiency initially decreased and then increased with precipitation. Moreover, the elements with higher NuREs typically had lower coefficient of variation (CV) in all three oak species. Conclusions Different oak species exhibited analogous nutrient conservation strategies in response to annual climate variabilities, and interannual climate variations strongly impacted plant nutrient resorption. Deciduous plants may establish a tradeoff mechanism to rebalance somatic nutrients for regrowth at the end of the growing season.


2021 ◽  
Author(s):  
Xue Feng ◽  
Ruzhen Wang ◽  
Tianpeng Li ◽  
Jiangping Cai ◽  
Heyong Liu ◽  
...  

Abstract Purpose Sulfur (S) deposition as a global change issue causes worldwide soil acidification, nutrient mobilization and marked changes in plant nutrition. Here, we investigated how S deposition would affect leaf nutrient resorption and how this effect varies with yearly fluctuations in precipitation. Methods In a semiarid meadow exposed to S addition, we measured nitrogen (N), phosphorus (P) and S concentrations in green and senescent leaves of a grass and a sedge and calculated nutrient resorption efficiencies (NuRE) across two years with contrasting precipitation (13% higher and 27% lower than long-term mean annual precipitation). Results Concentrations of N, P, and S in green and senescent leaves generally increased with S addition across the two years, with the exception of N and P concentrations in green leaves of the grass that showed no response or even decreased with S addition. The coupling relationships between N and P concentrations showed interannual variations and tightened by nutrient resorption, as evidenced by stronger N and P correlations in senescent leaves than in green leaves in the wet year. Leaf NuRE convergently decreased with S addition across the two years congruent with soil acidification and increased soil N, P and S availability, while NuRE was higher in the wet year due to lower soil nutrient availability herein. Conclusions This study provides new evidence on the role of nutrient resorption in tightening stoichiometric N:P relationships, and a three-dimensional feedback framework that plant nutrient resorption was favored by higher precipitation to sharpen its tradeoff with soil nutrient availability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Wang ◽  
G. Geoff Wang ◽  
Lining Song ◽  
Risheng Zhang ◽  
Tao Yan ◽  
...  

Nutrient resorption is an important strategy for nutrient conservation, particularly under conditions of nutrient limitation. However, changes in nutrient resorption efficiency with stand development and the associated correlations with ecological stoichiometry and homeostasis are poorly understood. In the study, the authors measured carbon (C), nitrogen (N), and phosphorus (P) concentrations in soil and in green and senesced needles along a chronosequence of Mongolian pine (Pinus sylvestris var. mongolica) plantations (12-, 22-, 31-, 42-, 52-, and 59-year-old) in Horqin Sandy Land of China, calculated N and P resorption efficiency (NRE and PRE, respectively), and homeostasis coefficient. The authors found that soil organic C and total N concentrations increased, but soil total P and available P concentrations decreased with stand age. Green needle N concentrations and N:P ratios as well as senesced needle C:N ratios, NRE, and PRE exhibited patterns of initial increase and subsequent decline with stand age, whereas green needle C:N ratios and senesced needle N concentrations, and N:P ratios exhibited the opposite pattern. NRE was positively correlated with N concentration and N:P ratio, but negatively correlated with C:N ratio in green needles, whereas the opposite pattern was observed in senesced needles. PRE was negatively correlated with senesced needle P concentration, soil-available N concentration, and available N:P ratio. The homeostatic coefficient of N:P was greater when including all stand ages than when including only those younger than 42 years. These findings indicate that tree growth may change from tending to be N limited to tending to be P limited along the Mongolian pine plantation chronosequence. Nutrient resorption was coupled strongly to tree growth and development, whereas it played a lesser role in maintaining stoichiometric homeostasis across the plantation chronosequence. Therefore, adaptive fertilization management strategies should be applied for the sustainable development of Mongolian pine plantations.


2021 ◽  
Author(s):  
Baoming Du ◽  
Huawei Ji ◽  
Shirong Liu ◽  
Hongzhang Kang ◽  
Shan Yin ◽  
...  

Abstract Background:Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities, which further impacts litter quality and nutrient cycling. However, the interannual variability of nutrient resorption under climate change remains unclear.Methods: We investigated the five-year nutrient resorption efficiencies (NuRE, %) of 14 elements in three deciduous oak tree species, Quercus aliena var. acuteserrata, Q. glandulifera, and Q. variabilis species in a warm-temperate forest of Central China, and assessed their relationships with interannual climate and soil factors. Results:Nutrient resorption did not differ between species but varied significantly between different years. For each year, nucleic acid-protein elements (N, P, S, and K) were preferentially resorbed in all of the oak species in contrast to photosynthesis-enzymic (C, Mg, and Zn) and structural (Ca, Na, Mn, and Ba) elements, which were to some extent discriminated, and toxic (Al and Fe) elements that were completely excluded. Among the 14 elements, the NuRE of N, P, S, Ca, and Mg was closely associated with interannual climate in the three oak species, showing N and S resorption efficiency were reduced with temperature, while N, P, and S resorption efficiency initially decreased and then increased with precipitation. Moreover, the elemental coefficient variations between different years generally decreased with higher NuREs in all three oak species.Conclusions: Different oak species have analogous nutrient conservation strategies in response to annual climate variability, and interannual climate variations strongly impacted plant nutrient resorption. Deciduous plants may establish a trade-off mechanism to rebalance somatic nutrients for regrowth at the end of growing season.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinpei Gao ◽  
Quan Li ◽  
Junbo Zhang ◽  
Kunkai Cui ◽  
Zhizhuang Wu ◽  
...  

Nutrient resorption can affect plant growth, litter decomposition, and nutrient cycling. Although the effects of nitrogen (N) and biochar fertilizers on soil nutrient concentrations and plant nutrient uptake have been studied, an understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is lacking. In this study, we applied N (0, 30, 60, and 90 kg N ha−1 yr−1 defined as N0, N30, N60, and N90, respectively) and biochar (0, 20, and 40 t biochar ha−1 defined as BC0, BC20, and BC40, respectively) to the soil of a Moso bamboo plantation. We investigated the effects of these treatments on N and phosphorus (P) resorption by young and mature bamboo plants, as well as the relationships between nutrient resorption and leaf and soil nutrient concentrations. Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N addition alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but significantly decreased the NRE and PRE of both young and mature bamboo. In both the N-free and N-addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly negatively correlated with fresh leaf N and P concentrations and soil total P concentration but significantly positively correlated with soil pH. Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from “conservative consumption” to “resource spending.” Furthermore, biochar amendment enhanced the negative effect of N addition on nutrient resorption in young bamboo but reduced the negative effect on that of mature bamboo under N-addition treatments. This study provides new insights into the combined effects of N and biochar on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations.


Sign in / Sign up

Export Citation Format

Share Document