Pathogenicity of Mycochaetophora gentianae, causal fungus of gentian brown leaf spot, as affected by host species, inoculum density, temperature, leaf wetness duration, and leaf position

2010 ◽  
Vol 76 (6) ◽  
pp. 370-376 ◽  
Author(s):  
Syuuichi Nekoduka ◽  
Kazuaki Tanaka ◽  
Teruo Sano
2009 ◽  
Vol 75 (1) ◽  
pp. 1-8 ◽  
Author(s):  
T. KOBAYASHI ◽  
S. KASUYAMA ◽  
H. NASU ◽  
Y. ONO ◽  
K. WATANABE

Crop Science ◽  
1986 ◽  
Vol 26 (3) ◽  
pp. 533-536 ◽  
Author(s):  
Clyde C. Berg ◽  
Robert T. Sherwood ◽  
Kenneth E. Zeiders

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 1038 ◽  
Author(s):  
T. E. Kaspary ◽  
C. Bellé ◽  
C. A. G. Rigon ◽  
L. Cutti ◽  
G. Casarotto ◽  
...  

Author(s):  
S. Little

Abstract A description is provided for Pseudocercospora timorensis. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Ipomoea batatas (sweet potato), I. biloba, I. campanulata, I. cordofana, I. muricata, I. peltata, I. setifera.DISEASE: Leaf spot or brown leaf spot of sweet potato. Small circular lesions first form on the leaf borders and tips before spreading over the leaf surface. These leaf spots enlarge becoming brown to dark brown in colour with a verruculose surface. The larger leaf veins may delimit the spots. GEOGRAPHICAL DISTRIBUTION: Africa: most countries; Asia: Hong-Kong, India, Indonesia, Malaysia, Taiwan; Australasia: Fiji, Papua New Guinea, Solomon Islands; North America: West Indies (St Lucia). TRANSMISSION: Presumably by wind-borne and water-splash dispersed conidia.


2015 ◽  
Vol 3 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Md. Amanut Ullah Razu ◽  
Ismail Hossain

Comparative efficacy of BAU-Biofungicide (2%), a product of Trichoderma harzianum, Garlic (Allium sativum) clove extract (5%), Allamanda(Allamanda cathartica) leaf extract (5%), Bion (25ppm), Amistar (0.1%) and Tilt 250EC (0.1%) were evaluated for eco-friendly managementof diseases of rice cv. BRRI Dhan-49 under field and laboratory conditions from July,2013 to March,2014. The field experiment was carriedout following Randomised Complete Block Design and the laboratory experiments were done following Completely Randomized Design.Brown spot, Narrow brown leaf spot, Bacterial leaf blight and Sheath blight were recorded in the field. The lowest incidence of brown spotand narrow brown leaf spot was observed in plots treated with BAU-Biofungicide and that of bacterial leaf blight was observed in plots sprayedwith Allamanda leaf extract. In case of sheath blight, the lowest incidence was observed in BAU-Biofungicide sprayed plots. The highest grainyield (3680.34kg/ha) was recorded in plots sprayed with BAU-Biofungicide which is 40.56% higher over control. The highest seed germination(%) was recorded when seeds were treated with Garlic clove extract (89.29%) followed by BAU-Biofungicide (87.30%). The prevalence ofseed-borne fungi was investigated by blotter method. The identified seed-borne fungal species were Bipolaris oryzae, Fusarium oxysporum,Fusarium moniliforme, Curvularia lunata, Aspergillus niger and Aspergillus flavus. Maximum reduction of seed-borne infection of pathogenswas obtained by treating seeds with BAU-Biofungicide (2% of seed weight).DOI: http://dx.doi.org/10.3126/ijasbt.v3i1.11977    Int J Appl Sci Biotechnol, Vol. 3(1): 80-88 


Sign in / Sign up

Export Citation Format

Share Document