leaf spot disease
Recently Published Documents


TOTAL DOCUMENTS

944
(FIVE YEARS 321)

H-INDEX

26
(FIVE YEARS 4)

Plant Disease ◽  
2022 ◽  
Author(s):  
Xiang Xie ◽  
Shiqiang Zhang ◽  
Qingjie Yu ◽  
Xinye Li ◽  
Yongsheng Liu ◽  
...  

Camellia oleifera, a major tree species for producing edible oil, is originated in China. Its oil is also called ‘‘eastern olive oil’’ with high economic value due to richness in a variety of healthy fatty acids (Lin et al. 218). However, leaves are susceptible to leaf spot disease (Zhu et al. 2014). In May 2021, we found circular to irregular reddish-brown lesions, 4-11 mm in diameter, near the leaf veins or leaf edges on 30%-50% leaves of 1/3 oil tea trees in a garden of Hefei City, Anhui Province, China (East longitude 117.27, North latitude 31.86) (Figure S1 A). To isolate the causal agents, symptomatic leaves were cut from the junction of diseased and healthy tissues (5X5 mm) and treated with 70 % alcohol for 30 secs and 1 % NaClO for 5 min, and subsequently inoculated onto PDA medium for culture. After 3 days, hyphal tips were transferred to PDA. Eventually, five isolates were obtained. Then the isolates were cultured on PDA at 25°C for 7 days and the mycelia appeared yellow with a white edge and secreted a large amount of orange-red material to the PDA (Figure S1 B and C). Twenty days later, the mycelium appeared reddish-brown, and sub-circular (3-10 mm) raised white or yellow mycelium was commonly seen on the Petri dish, and black particles were occasionally seen. Meanwhile, the colonies on the PDA produced abundant conidia. Microscopy revealed that conidia were globular to pyriform, dark, verrucose, and multicellular with 14.2 to 25.3 μm (=19.34 μm, n = 30) diameter (Figure S1 D). The morphological characteristics of mycelial and conidia from these isolates are similar to that of Epicoccum layuense (Chen et al.2020). To further determine the species classification of the isolates, DNA was extracted from 7-day-old mycelia cultures and the PCR-amplified fragments were sequenced for internal transcribed spacer (ITS), beta-tubulin and 28S large subunit ribosomal RNA (LSU) gene regions ITS1/ITS4, Bt2a/Bt2b and LR0R/LR5, followed by sequencing and molecular phylogenetic analysis of the sequences analysis (White et al. 1990; Glass and Donaldson 1995; Vilgalys and Hester 1990). Sequence analysis revealed that ITS, beta-tubulin, and LSU divided these isolates into two groups. The isolates AAU-NCY1 and AAU-NCY2, representing the first group (AAU-NCY1 and AAU-NCY5) and the second group (AAU-NCY2, AAU-NCY3 and AAU-NCY4), respectively, were used for further studies. Based on BLASTn analysis, the ITS sequences of AAU-NCY1 (MZ477250) and AAU-NCY2 (MZ477251) showed 100 and 99.6% identity with E. layuense accessions MN396393 and KY742108, respectively. And, the beta-tubulin sequences (MZ552310; MZ552311) showed 99.03 and 99.35% identity with E. layuense accessions MN397247 and MN397248, respectively. Consistently, their LSU (MZ477254; MZ477255) showed 99.88 and 99.77% identity with E. layuense accessions MN328724 and MN396395, respectively. Phylogenetic trees were built by maximum likelihood method (1,000 replicates) using MEGA v.6.0 based on the concatenated sequences of ITS, beta-tubulin and LSU (Figure S2). Phylogenetic tree analysis confirmed that AAU-NCY1 and AAU-NCY2 are closely clustered with E. layuense stains (Figure S2). To test the pathogenicity, conidial suspension of AAU-NCY2 (106 spores/mL) was prepared and sterile water was used as the control. Twelve healthy leaves (six for each treatment) on C. oleifera tree were punched with sterile needle (0.8-1mm), the sterile water or spore suspension was added dropwise at the pinhole respectively (Figure S1 E and F). The experiment was repeated three times. By ten-day post inoculation, the leaves infected by the conidia gradually developed reddish-brown necrotic spots that were similar to those observed in the garden, while the control leaves remained asymptomatic (Figure S1 G and H). DNA sequences derived from the strain re-isolated from the infected leaves was identical to that of the original strain. E. layuense has been reported to cause leaf spot on C. sinensis (Chen et al. 2020), and similar pathogenic phenotypes were reported on Weigela florida (Tian et al. 2021) and Prunus x yedoensis Matsumura in Korea ( Han et al. 2021). To our knowledge, this is the first report of E. layuense causing leaf spot on C. oleifera in Hefei, China.


Plant Disease ◽  
2022 ◽  
Author(s):  
Peng Cao ◽  
Yuhui Fang ◽  
Zikui Zheng ◽  
Xia Han ◽  
Huixi Zou ◽  
...  

Dendrobium officinale Kimura L., an endangered orchid plant, is a rare and precious Chinese herb and widely used to prepare Chinese traditional medicine (Zheng et al. 2005). In August 2021, significant indications of an unknown leaf spot disease were observed on greenhouse-grown D. officinale in Yueqing of Wenzhou (28.39°N, 121.04°E), Zhejiang Province, China, the main producing location of this orchid plant. Approximately twenty percent of plants surveyed showed typical infection symptoms. Initially, the symptoms appeared as small, circular black spots. As the disease developed, the center of the lesions was sunken with a black border. To determine the causal agent, 10 symptomatic plant samples were collected and all pieces from symptomatic plant leaves were used for isolating pathogen. Tissues between healthy and necrotic area were cut into pieces (5 × 5 mm, n=10), disinfected with 10% sodium hypochlorite for 1 minute, rinsed 3 times with sterile water, and dried on sterile tissue. Samples were then placed on potato dextrose agar medium (PDA) for 1 piece per plate, and incubated at 25℃ in a dark biochemical incubator. After 3 days, hyphal tips growing from the disinfected tissues were individually transferred to new PDA plates and incubated at 25℃ in the dark. Twelve same fungal isolates were obtained from all symptomatic leave fragments, then DDO11 was chosen as a representative isolate for further study. The colonies showed white aerial mycelium after 5 days culture at 25°C on PDA. Black viscous acervuli appeared and scattered on the surface of the colony after 8-12 days culture. Conidia were spindle shape, five cells, four septa, average 29.3 × 8.5 μm (n = 30; length × width). The apical and basal cells were lighter in color, and most of them were hyaline. The middle three cells were darker in color, and mostly brown. There are 2 to 4 colorless and transparent unbranched accessory filaments at the top, 32.5 µm in average length, and the basal cell has a small appendage, 9.2 µm in average length, n=30. For fungal identification to species level, Internal transcribed spacer (ITS) region, β-tubulin gene (TUB2) and translation elongation factor-1α (TEF-1α) were amplified (Qiu et al. 2020), respectively. The ITS, TUB2 and TEF-1α gene sequences of the representative isolate DDO11 were deposited in NCBI GenBank nucleotide database with accession numbers OK631881, OK655895 and OK655896, respectively. BLASTn analysis respectively showed 100%, 100% and 99.6% nucleotide sequence identity with Neopestalotiopsis clavispora strain accessions MG729690, MG740736 and MH423940, which indicated that the pathogen belonged N. clavispora. A maximum-likelihood phylogenetic analysis based on multi-locus sequence (ITS, TUB2, and TEF-1α) using MEGA X showed the similar result (Kumar et al. 2018). To verify pathogenicity, thirty 1-year-old healthy D. officinale plants of cultivar Yandang1 were used for inoculation tests. Spores of N. clavispora DDO11 were produced on PDA for 7 days at 28°C and washed with sterile distilled water, and the concentrations were adjusted to 1 × 106 spores/ml using a hemocytometer. Fifteen surface disinfected healthy plants were inoculated by spraying the suspension (2 ml, 1 × 106 spores/ml) and covered with plastic bags for 24 h, and another 15 plants treated with sterile distilled water were used as control. The plants were placed in a humidified chamber (>95% relative humidity) at 25°C for 48 h after inoculation and kept in a growth chamber (Kiangnan, China) at 25°C with 12-h day/night cycle for 8 days (Cao et al. 2019). All inoculated leaves showed symptoms identical to those observed in the field. No disease occurred on the controls. The Neopestalotiopsis isolate was reisolated from the symptomatic leaves, and species identification was confirmed by the morphological and molecular method described above. N. clavispora has been reported to cause diseases on a variety of plants all over the world, such as strawberry (Gilardi et al. 2019), blue berry (Shi et al. 2021), Syzygium cumini (Banerjee et al. 2020), Macadamia (Qiu et al. 2020), and so on. To the best of our knowledge, this is the first report of N. clavispora causing leaf spot on D. officinale in China. This report will help us to recognize the leaf spot disease of D. officinale and establish a foundation for future studies on N. clavispora to address effective management strategies.


2021 ◽  
Vol 27 (4) ◽  
pp. 180-186
Author(s):  
Kyoung-Soo Park ◽  
Ji-Hye Lee ◽  
Young-Tak Kim ◽  
Hye-Seong Kim ◽  
June-woo Lee ◽  
...  

Typical bacterial symptoms, water-soaking brown and black leaf spots with yellow halo, were observed on watermelon seedlings in nursery and field of Gyeongnam and Jeonnam provinces. Bacterial isolates from the lesion showed strong pathogenicity on watermelon and zucchini. One of them was rod-shaped with 4 polar flagella by observation of transmission electron microscopy. They belonged to LOPAT group 1. The phylogenical trees with nucleotide sequences of 16S rRNA and multi-locus sequencing typing with the 4 house-keeping genes (gapA, gltA, gyrB, and rpoD) of the isolates showed they were highly homologous to Pseudomonas syringae pv. syringae and grouped together with them, indicating that they were appeared as P. syringae genomospecies group 1. Morphological, physiological, and genetical characteristics of the isolates suggested they are P. syringae pv. syringae. We believe this is the first report that P. syringae pv. syringae caused leaf spot disease on watermelon in the Republic of Korea.


2021 ◽  
Vol 14 (1) ◽  
pp. 391
Author(s):  
Yiannis G. Zevgolis ◽  
Efstratios Kamatsos ◽  
Triantaphyllos Akriotis ◽  
Panayiotis G. Dimitrakopoulos ◽  
Andreas Y. Troumbis

Conservation of traditional olive groves through effective monitoring of their health state is crucial both at a tree and at a population level. In this study, we introduce a comprehensive methodological framework for estimating the traditional olive grove health state, by considering the fundamental phenotypic, spectral, and thermal traits of the olive trees. We obtained phenotypic information from olive trees on the Greek island of Lesvos by combining this with in situ measurement of spectral reflectance and thermal indices to investigate the effect of the olive tree traits on productivity, the presence of the olive leaf spot disease (OLS), and olive tree classification based on their health state. In this context, we identified a suite of important features, derived from linear and logistic regression models, which can explain productivity and accurately evaluate infected and noninfected trees. The results indicated that either specific traits or combinations of them are statistically significant predictors of productivity, while the occurrence of OLS symptoms can be identified by both the olives’ vitality traits and by the thermal variables. Finally, the classification of olive trees into different health states possibly offers significant information to explain traditional olive grove dynamics for their sustainable management.


2021 ◽  
Vol 53 (4) ◽  
pp. 749-757
Author(s):  
P. Papan ◽  
W. Chueakhunthod ◽  
O. Poolsawat ◽  
K. Arsakit ◽  
A. Tharapreuksapong ◽  
...  

Cercospora leaf spot (CLS) resistance is a highly desirable trait for mungbean (Vigna radiata [L.] Wilczek) production in Thailand. ‘V4718’ is a vital resistance source that shows high and stable resistance to CLS disease. A previous study identified a major quantitative trait locus (QTL) (qCLSC72V18-1) controlling CLS resistance and found the marker (I16274) that was located closest to the resistance gene by using F2:9 and F2:10 recombinant inbred line populations derived through a cross between ‘V4718’ and the susceptible variety ‘Chai Nat 72’ (‘CN72’). Here, we evaluated three newly reported simple sequence repeat (SSR) markers and one InDel marker together with six previously identified markers that were linked to qCLSC72V18-1 to further identify the markers that were located close to this QTL. By performing bulk segregant analysis on two validation populations, we found that two SSR markers (Vr6gCLS037 and Vr6gCLS133) and one InDel marker (VrTAF5_indel) were putatively associated with CLS resistance. Of these markers, only the VrTAF5_indel marker showed a significant association with the CLS resistance gene with a logarithm of odds score > 3 across the phenotypic data for 2016 and 2018. QTL analysis with inclusive composite interval mapping revealed that the VrTAF5_indel marker was integrated into the genetic map with other previously identified markers. The I16274 and VrTAF5_indel markers flanking the QTL of interest accounted for 41.56%-60.38% of the phenotypic variation with genetic distances of 4.0 and 5.0 cM from the resistance gene, respectively. Both markers together permitted only 0.40% recombination with the CLS resistance gene in marker-assisted selection and thus could be useful in future breeding efforts for CLS resistance in mungbean.


2021 ◽  
Vol 11 (40) ◽  
pp. 161-162
Author(s):  
Grazia Trebbi ◽  
Giovanni Dinelli ◽  
Ilaria Marotti ◽  
Valeria Bregola ◽  
Maurizio Brizzi ◽  
...  

Introduction: This research aimed at verifying the effects of highly diluted (HD) treatments on cauliflower (Brassica oleracea L.) plants both healthy and inoculated by the fungus Alternaria brassicicola, causing the dark leaf spot disease. In vitro spore germination assays (A), growth chamber experiments (B) and field trials (C) were performed. Material and Methods: (A): spore suspensions were prepared in HD treatments and their inhibiting effect on germination was recorded microscopically after incubation at 25°C for 5 h. (B): the same treatments were tested in plants artificially inoculated with the fungus. The infection level on leaves was blindly evaluated by a previously defined infection scale. (C): the field was divided into plots according to a complete randomized block design. In the first trial (i), plants were artificially inoculated and weekly treated; the infection level was evaluated on cauliflower heads. The second trial (ii) was performed on the same field with the aim to induce a natural infection, mediated by infected crop residues. Measurement endpoints concerned the evaluation of some physiological parameters along with the glucosinolate content on cauliflower heads. Results: (A): arsenic trioxide (As 35x and 35x diluted 1:5000) and Cuprum 5x induced highly significant inhibition of germination rate (-60%) vs. control. (B): As 35x and Cu 3 g/l induced a significant decrease of mean infection level (-50%). (C): in (i), a significant reduction of disease symptoms on heads was recorded for As 35x and Cu 3 g/l (-45%). In (ii) natural fungal infection did not occur due to dry weather conditions; physiological and nutraceutical analyses of healthy heads demonstrated that As 35x induced a significant increase of both head size and glucosinolate content. Discussion: Some evidences on the efficacy of arsenic, at different decimal and centesimal HD, in fungal and viral disease control were previously reported [1]. In the present study the efficacy of HD arsenic in dark leaf spot control in field has been shown for the first time: since fungal inoculation was performed on the leaves before flowering, we can hypothesize that this treatment induced an increase of plant resistance to fungal infection. Conclusions: This research showed the possibility of using HD arsenic in agriculture (“agrohomeopathy”), as it increased both plant resistance to fungal infection and the content of glucosinolates, ie secondary metabolites involved in plant resistance mechanisms [2] and considered as “plant food protection agents” [3]. Acknowledgments: Authors declare there is no conflict of interest. This research has been supported by Marche Region. A grateful acknowledgement to Dr. Leonardo Valenti for his support to this research. The authors thank Laboratoires Boiron srl for the grant awarded to one of the author Dr. Grazia Trebbi. Finally, authors are grateful to Cemon srl for financial support of glucosinolate analyses. We had full access to all the data in this study and we take responsibility for the integrity of the data and the accuracy of the data analysis Keywords: cauliflower, arsenic trioxide, Alternaria brassicicola, glucosinolates References [1] Betti L, Trebbi G, Majewsky V, Scherr C, Shah-Rossi D, Jäger T, et al. Use of homeopathic preparations in phytopathological models and in field trials: a critical review. Homeopathy 2009; 98: 244-266. [2] Ménard R, Larue J-P, Silué D, Thouvenot D. Glucosinolates in cauliflower as biochemical markers for resistance against downy mildew. Phytochemistry 1999; 52: 29-35. [3] Talalay P, Fahey JW. Phytochemicals from Cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr. 2001; 131:3027S- 3033S.


Plant Disease ◽  
2021 ◽  
Author(s):  
Tao Zheng ◽  
Lin Zhao ◽  
Meng Ge Huang ◽  
Jian-Xin Deng ◽  
Yan Hui Wang

Oxalis corymbosa DC. introduced into China as an ornamental plant in the mid-19th century is commonly known as an important medicinal and edible perennial herb (Zhou et al. 2021). The plant native to South America is also an invasive and widely distributed weed found in agricultural farms, gardens, and lawns, especially in sugarcane fields of Guangxi province, China. The coverage rate of O. corymbosa in sugarcane fields was normally more than 70%, sometimes up to 100%. In March of 2021, a leaf spot disease of O. corymbosa from sugarcane fields was encountered in Nanning city of Guangxi province, China. Early symptoms appeared as small yellowish round spots. The spots turned to be irregularly, usually exhibiting pale brown necrosis in the center with dark brown necrotic well-defined margins. Severely infected leaves turned to be blighted, then dead. To isolate the pathogen, diseased leave tissue fragments (4 mm × 4 mm) were soaked in 75% ethanol for 10 s followed by 2% sodium hypochlorite for 1 min, and rinsed by sterile water for three times. They were transferred to potato dextrose agar (PDA) medium cultured at 25 °C. Pure cultures were obtained by collected hypha tip from upcoming colonies. The colony features were similar to each other, floccose, white at first, becoming brown, dark brown or black on PDA after 7 days fully covered the 90 mm petri-dishes. Conidial determination were conducted on synthetic nutrient-poor agar medium (SNA) according to Wang et al. (2017). Conidia abundantly dispersed on SNA arising from conidiophores, which normally reduced to conidiogenous cells generated from hyphae. The conidiogenous cells were monoblastic, hyaline, globose or ampulliform, 6–8.5 (–12.5) × 5–7.5 (–9) μm in size (n=50). Conidia were solitary, smooth, black, sphaerical or ellipsoidal, (11–) 13–16.5 × (8–) 10–15.5 μm in size (n=100). Setae were not observed during the observation. The fungus was identified as Nigrospora sp. based on the morphology. One of the representative strains (FSC-3) was selected for genomic DNA extraction. The sequences of transcribed spacer region of rDNA (ITS), the partial translation elongation factor (TEF1), and the Beta-tubulin fragment (TUB) were respectively amplified using primer pairs ITS1/ITS4 (White et al. 1990), EF1-728F and EF2 (Carbone & Kohn 1999, Crous et al. 2013) and Bt2a and Bt2b (Glass & Donaldson 1995), deposited in the NCBI GenBank with accession numbers of OK083685 (541 bp), OK184809 (481 bp) and OK086377 (421 bp). BLASTn analysis showed that those ITS, TEF1 and TUB gene sequences shared 99%-100% identity with the type strain (CGMCC3.18129) of Nigrospora hainanensis (GenBank accession nos. NR153480, KY019415, KY019464, respectively). In addition, a maximum likelihood analysis using concatenated gene sequences of ITS, TEF1 and TUB was performed in RAxML v.7.2.8 (Stamatakis 2006) implementing the model of GTRCAT with 1,000 bootstrap replicates. The phylogenetic results indicated that the strain FSC-3 was N. hainanensis, which also confirmed after a morphological comparison with N. hainanensis (Wang et al. 2017). Pathogenicity was tested on living Oxalis corymbosa leaves (3 plants for each test) arising from cultivated roots grown for three weeks. It was conducted by dropping 5 μL conidial suspensions (105 conidia / mL) on the living leaves (two sites per leave) incubated in separate containers at 25 °C with 90-100% relative humidity after inoculation. Controls were treated with sterile distilled water. Pale brown small spots came up after 24 h, and then extended to brown larger spots. Symptoms after inoculation were similar to field ones, while the control plants remained healthy. The pathogenicity test was repeated twice with the similar results. Re-isolation of the pathogen from the inoculated leaves was determined based on morphology and sequence analysis to fulfill Koch's postulates. Nigrospora hainanensis had been found from diseased root and leaf tissues of sugarcane in Liuzhou city, Guangxi province (Raza et al. 2019). The results indicated that O. corymbosa was another host in sugarcane fields in Guangxi, China. To our knowledge, this is the first report of Nigrospora hainanensis causing leaf spot on Oxalis corymbosa in China.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1264
Author(s):  
Urszula Wachowska ◽  
Edyta Kwiatkowska ◽  
Wioletta Pluskota

Background: Sida hermaphrodita (Virginia fanpetals) was introduced to Poland nearly 70 years ago as a potential fodder plant, and it is gaining importance as an energy crop. Alternaria alternata transmitted by seeds may exert a negative effect on the health of Virginia fanpetals plants. Methods: The virulence of the A. alternata pathogen, isolated from Virginia fanpetals seeds, was tested on detached leaves of Virginia fanpetals plants. The isolates were identified as A. alternata based on partial sequence analysis of Alta1, TEF1a and gdp genes and the ITS 1–5.8SrDNA–ITS 2 region. Pathogen transmission from seeds to seedlings and the influence of seed dressing with a suspension of Aureobasidium pullulans on seedling health were analyzed in a greenhouse experiment. Results: Three of the nine analyzed A. alternata isolates were highly pathogenic for S. hermaphrodita. The initial symptoms of leaf infection were small, round dark brown or black spots which grew into larger dark brown spots surrounded by a chlorotic halo. Alternaria alternata was re-isolated from inoculated plants and was identified as the causal agent of Alternaria leaf spot disease. In the greenhouse experiment, S. hermaphrodita seeds dressed with a suspension of A. pullulans and inoculated with A. alternata produced a higher number of seedlings with a higher health status than non-dressed seeds. Conclusions: The study demonstrated that A. alternata is transmitted from infected S. hermaphrodita seeds to developing plants and biological control limits this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document