A visual object segmentation algorithm with spatial and temporal coherence inspired by the architecture of the visual cortex

Author(s):  
Juan A. Ramirez-Quintana ◽  
Raul Rangel-Gonzalez ◽  
Mario I. Chacon-Murguia ◽  
Graciela Ramirez-Alonso
2017 ◽  
Vol 117 (1) ◽  
pp. 388-402 ◽  
Author(s):  
Michael A. Cohen ◽  
George A. Alvarez ◽  
Ken Nakayama ◽  
Talia Konkle

Visual search is a ubiquitous visual behavior, and efficient search is essential for survival. Different cognitive models have explained the speed and accuracy of search based either on the dynamics of attention or on similarity of item representations. Here, we examined the extent to which performance on a visual search task can be predicted from the stable representational architecture of the visual system, independent of attentional dynamics. Participants performed a visual search task with 28 conditions reflecting different pairs of categories (e.g., searching for a face among cars, body among hammers, etc.). The time it took participants to find the target item varied as a function of category combination. In a separate group of participants, we measured the neural responses to these object categories when items were presented in isolation. Using representational similarity analysis, we then examined whether the similarity of neural responses across different subdivisions of the visual system had the requisite structure needed to predict visual search performance. Overall, we found strong brain/behavior correlations across most of the higher-level visual system, including both the ventral and dorsal pathways when considering both macroscale sectors as well as smaller mesoscale regions. These results suggest that visual search for real-world object categories is well predicted by the stable, task-independent architecture of the visual system. NEW & NOTEWORTHY Here, we ask which neural regions have neural response patterns that correlate with behavioral performance in a visual processing task. We found that the representational structure across all of high-level visual cortex has the requisite structure to predict behavior. Furthermore, when directly comparing different neural regions, we found that they all had highly similar category-level representational structures. These results point to a ubiquitous and uniform representational structure in high-level visual cortex underlying visual object processing.


Author(s):  
A. Nithya ◽  
R. Kayalvizhi

The main purpose of this research is to improve the accuracy of object segmentation in database images by constructing an object segmentation algorithm. Image segmentation is a crucial step in the field of image processing and pattern recognition. Segmentation allows the identification of structures in an image which can be utilized for further processing. Both region-based and object-based segmentation are utilized for large-scale database images in a robust and principled manner. Gradient based MultiScalE Graylevel mOrphological recoNstructions (G-SEGON) is used for segmenting an image. SEGON roughly identifies the background and object regions in the image. This proposed method comprises of four phases namely pre-processing phase, object identification phase, object region segmentation phase, majority selection and refinement phase. After developing the grey level mesh the resultant image is converted into gradient and K-means clustering segmentation algorithm is used to segment the object from the gradient image. After implementation the accuracy of the proposed G-SEGON technique is compared with the existing method to prove its efficiency.


2021 ◽  
Author(s):  
Dmitri Ignakov

A vision system is an integral component of many autonomous robots. It enables the robot to perform essential tasks such as mapping, localization, or path planning. A vision system also assists with guiding the robot's grasping and manipulation tasks. As an increased demand is placed on service robots to operate in uncontrolled environments, advanced vision systems must be created that can function effectively in visually complex and cluttered settings. This thesis presents the development of segmentation algorithms to assist in online model acquisition for guiding robotic manipulation tasks. Specifically, the focus is placed on localizing door handles to assist in robotic door opening, and on acquiring partial object models to guide robotic grasping. . First, a method for localizing a door handle of unknown geometry based on a proposed 3D segmentation method is presented. Following segmentation, localization is performed by fitting a simple box model to the segmented handle. The proposed method functions without requiring assumptions about the appearance of the handle or the door, and without a geometric model of the handle. Next, an object segmentation algorithm is developed, which combines multiple appearance (intensity and texture) and geometric (depth and curvature) cues. The algorithm is able to segment objects without utilizing any a priori appearance or geometric information in visually complex and cluttered environments. The segmentation method is based on the Conditional Random Fields (CRF) framework, and the graph cuts energy minimization technique. A simple and efficient method for initializing the proposed algorithm which overcomes graph cuts' reliance on user interaction is also developed. Finally, an improved segmentation algorithm is developed which incorporates a distance metric learning (DML) step as a means of weighing various appearance and geometric segmentation cues, allowing the method to better adapt to the available data. The improved method also models the distribution of 3D points in space as a distribution of algebraic distances from an ellipsoid fitted to the object, improving the method's ability to predict which points are likely to belong to the object or the background. Experimental validation of all methods is performed. Each method is evaluated in a realistic setting, utilizing scenarios of various complexities. Experimental results have demonstrated the effectiveness of the handle localization method, and the object segmentation methods.


2016 ◽  
Vol 28 (5) ◽  
pp. 680-692 ◽  
Author(s):  
Daria Proklova ◽  
Daniel Kaiser ◽  
Marius V. Peelen

Objects belonging to different categories evoke reliably different fMRI activity patterns in human occipitotemporal cortex, with the most prominent distinction being that between animate and inanimate objects. An unresolved question is whether these categorical distinctions reflect category-associated visual properties of objects or whether they genuinely reflect object category. Here, we addressed this question by measuring fMRI responses to animate and inanimate objects that were closely matched for shape and low-level visual features. Univariate contrasts revealed animate- and inanimate-preferring regions in ventral and lateral temporal cortex even for individually matched object pairs (e.g., snake–rope). Using representational similarity analysis, we mapped out brain regions in which the pairwise dissimilarity of multivoxel activity patterns (neural dissimilarity) was predicted by the objects' pairwise visual dissimilarity and/or their categorical dissimilarity. Visual dissimilarity was measured as the time it took participants to find a unique target among identical distractors in three visual search experiments, where we separately quantified overall dissimilarity, outline dissimilarity, and texture dissimilarity. All three visual dissimilarity structures predicted neural dissimilarity in regions of visual cortex. Interestingly, these analyses revealed several clusters in which categorical dissimilarity predicted neural dissimilarity after regressing out visual dissimilarity. Together, these results suggest that the animate–inanimate organization of human visual cortex is not fully explained by differences in the characteristic shape or texture properties of animals and inanimate objects. Instead, representations of visual object properties and object category may coexist in more anterior parts of the visual system.


Sign in / Sign up

Export Citation Format

Share Document