Concentration Phenomenon of Riemann Solutions for the Relativistic Euler Equations with the Extended Chaplygin Gas

2020 ◽  
Vol 170 (1) ◽  
pp. 539-568
Author(s):  
Yunfeng Zhang ◽  
Meina Sun
2017 ◽  
Vol 14 (03) ◽  
pp. 535-563 ◽  
Author(s):  
Changhua Wei

We are concerned with the global existence and blowup of the classical solutions to the Cauchy problem of one-dimensional isentropic relativistic Euler equations (Chaplygin gas, pressureless perfect fluid and stiff matter) with linearly degenerate characteristics. We at first derive the exact representation formula for all the fluids by the property of linearly degenerate. Then for the Chaplygin gas and the pressureless perfect fluid, we give a classification of the initial data that leads to the global existence and the blowup of the classical solution, respectively. We construct, especially, a class of initial data that contributes to the formation of “cusp-type” singularity and study the evolution of the solution after blowup by introducing a weak solution called delta shock wave. At last, for the stiff matter, we show that this system is indeed a linear system and prove the global existence of the classical solution to this fluid.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Lihui Guo ◽  
Gan Yin

The limit of Riemann solutions to the nonsymmetric system of Keyfitz-Kranzer type with a scaled pressure is considered for both polytropic gas and generalized Chaplygin gas. In the former case, the delta shock wave can be obtained as the limit of shock wave and contact discontinuity whenu->u+and the parameterϵtends to zero. The point is, the delta shock wave is not the one of transport equations, which is obviously different from cases of some other systems such as Euler equations or relativistic Euler equations. For the generalized Chaplygin gas, unlike the polytropic or isothermal gas, there exists a certain critical valueϵ2depending only on the Riemann initial data, such that whenϵdrops toϵ2, the delta shock wave appears asu->u+, which is actually a delta solution of the same system in one critical case. Then asϵbecomes smaller and goes to zero at last, the delta shock wave solution is the exact one of transport equations. Furthermore, the vacuum states and contact discontinuities can be obtained as the limit of Riemann solutions whenu-<u+andu-=u+, respectively.


Author(s):  
Yu Zhang ◽  
Yanyan Zhang

The Riemann problem for the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data is studied. First, the perturbed Riemann problem with three pieces constant initial data is solved. Then, via discussing the limits of solutions to the perturbed Riemann problem, the global solutions of Riemann problem with delta initial data are completely constructed under the stability theory of weak solutions. Interestingly, the delta contact discontinuity is found in the Riemann solutions of the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data.


Sign in / Sign up

Export Citation Format

Share Document