scholarly journals A chemorepulsion model with superlinear production: analysis of the continuous problem and two approximately positive and energy-stable schemes

2021 ◽  
Vol 47 (6) ◽  
Author(s):  
F. Guillén-González ◽  
M. A. Rodríguez-Bellido ◽  
D. A. Rueda-Gómez

AbstractWe consider the following repulsive-productive chemotaxis model: find u ≥ 0, the cell density, and v ≥ 0, the chemical concentration, satisfying $$ \left\{ \begin{array}{l} \partial_t u - {\Delta} u - \nabla\cdot (u\nabla v)=0 \ \ \text{ in}\ {\Omega},\ t>0,\\ \partial_t v - {\Delta} v + v = u^p \ \ { in}\ {\Omega},\ t>0, \end{array} \right. $$ ∂ t u − Δ u − ∇ ⋅ ( u ∇ v ) = 0 in Ω , t > 0 , ∂ t v − Δ v + v = u p i n Ω , t > 0 , with p ∈ (1, 2), ${\Omega }\subseteq \mathbb {R}^{d}$ Ω ⊆ ℝ d a bounded domain (d = 1, 2, 3), endowed with non-flux boundary conditions. By using a regularization technique, we prove the existence of global in time weak solutions of (1) which is regular and unique for d = 1, 2. Moreover, we propose two fully discrete Finite Element (FE) nonlinear schemes, the first one defined in the variables (u,v) under structured meshes, and the second one by using the auxiliary variable σ = ∇v and defined in general meshes. We prove some unconditional properties for both schemes, such as mass-conservation, solvability, energy-stability and approximated positivity. Finally, we compare the behavior of these schemes with respect to the classical FE backward Euler scheme throughout several numerical simulations and give some conclusions.

2013 ◽  
Vol 3 (2) ◽  
pp. 138-153 ◽  
Author(s):  
Y. Tang ◽  
Y. Hua

AbstractA quadratic optimal control problem governed by parabolic equations with integral constraints is considered. A fully discrete finite element scheme is constructed for the optimal control problem, with finite elements for the spatial but the backward Euler method for the time discretisation. Some superconvergence results of the control, the state and the adjoint state are proved. Some numerical examples are performed to confirm theoretical results.


2013 ◽  
Vol 9 (17) ◽  
pp. 111-145 ◽  
Author(s):  
Ramiro Acevedo ◽  
Gerardo Loaiza

The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called “A, V −A potential formulation” (B´ır´o & Preis [1]) is nowadays one of the most accepted formulations to solve the eddy current equations numerically, and B´ır´o & Valli [2] have recently provided its well-posedness and convergence analysis for the time-harmonic eddy current problem. The aim of this paper is to extend the analysis performed by B´ır´o & Valli to the general transient eddy current model. We provide a backward-Euler fully-discrete approximation based on nodal finite elements and we show that the resulting discrete variational problem is well posed. Furthermore, error estimates that prove optimal convergence are settled.


Author(s):  
Sergio Caucao ◽  
Ivan Yotov

Abstract We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart–Thomas spaces of degree $k$ for the pseudostress tensor and discontinuous piecewise polynomial elements of degree $k$ for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters.


2002 ◽  
Vol 12 (02) ◽  
pp. 183-203 ◽  
Author(s):  
LAURA S. ARAGONE ◽  
SILVIA C. DI MARCO ◽  
ROBERTO L. V. GONZÁLEZ

In this paper we deal with the numerical analysis of an optimal control problem of minimax type with finite horizon and final cost. To get numerical approximations we devise here a fully discrete scheme which enables us to compute an approximated solution. We prove that the fully discrete solution converges to the solution of the continuous problem and we also give the order of the convergence rate. Finally we present some numerical results.


2004 ◽  
Vol 14 (10) ◽  
pp. 1425-1450 ◽  
Author(s):  
CRISTINA BRÄNDLE ◽  
PABLO GROISMAN ◽  
JULIO D. ROSSI

We present adaptive procedures in space and time for the numerical study of positive solutions to the following problem: [Formula: see text] with p,m>0. We describe how to perform adaptive methods in order to reproduce the exact asymptotic behavior (the blow-up rate and the blow-up set) of the continuous problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Meilan Qiu ◽  
Liquan Mei ◽  
Dewang Li

We focus on developing the finite difference (i.e., backward Euler difference or second-order central difference)/local discontinuous Galerkin finite element mixed method to construct and analyze a kind of efficient, accurate, flexible, numerical schemes for approximately solving time-space fractional subdiffusion/superdiffusion equations. Discretizing the time Caputo fractional derivative by using the backward Euler difference for the derivative parameter (0<α<1) or second-order central difference method for (1<α<2), combined with local discontinuous Galerkin method to approximate the spatial derivative which is defined by a fractional Laplacian operator, two high-accuracy fully discrete local discontinuous Galerkin (LDG) schemes of the time-space fractional subdiffusion/superdiffusion equations are proposed, respectively. Through the mathematical induction method, we show the concrete analysis for the stability and the convergence under theL2norm of the LDG schemes. Several numerical experiments are presented to validate the proposed model and demonstrate the convergence rate of numerical schemes. The numerical experiment results show that the fully discrete local discontinuous Galerkin (LDG) methods are efficient and powerful for solving fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document