scholarly journals A no expanding breather theorem for noncompact Ricci flows

Author(s):  
Liang Cheng ◽  
Yongjia Zhang
Keyword(s):  
2021 ◽  
Vol 211 ◽  
pp. 112417
Author(s):  
Aijin Lin ◽  
Xiaoxiao Zhang

2021 ◽  
pp. 109195
Author(s):  
Zilu Ma ◽  
Yongjia Zhang
Keyword(s):  

2012 ◽  
Vol 273 (1-2) ◽  
pp. 449-460 ◽  
Author(s):  
Gregor Giesen ◽  
Peter M. Topping
Keyword(s):  

2016 ◽  
Vol 369 (1-2) ◽  
pp. 899-911 ◽  
Author(s):  
Richard H. Bamler ◽  
Davi Maximo

2003 ◽  
Vol 63 (1) ◽  
pp. 97-129 ◽  
Author(s):  
Bennett Chow ◽  
Feng Luo

2012 ◽  
Vol 09 (05) ◽  
pp. 1250041 ◽  
Author(s):  
SERGIU I. VACARU

There were elaborated different models of Finsler geometry using the Cartan (metric compatible), or Berwald and Chern (metric non-compatible) connections, the Ricci flag curvature, etc. In a series of works, we studied (non)-commutative metric compatible Finsler and non-holonomic generalizations of the Ricci flow theory [see S. Vacaru, J. Math. Phys. 49 (2008) 043504; 50 (2009) 073503 and references therein]. The aim of this work is to prove that there are some models of Finsler gravity and geometric evolution theories with generalized Perelman's functionals, and correspondingly derived non-holonomic Hamilton evolution equations, when metric non-compatible Finsler connections are involved. Following such an approach, we have to consider distortion tensors, uniquely defined by the Finsler metric, from the Cartan and/or the canonical metric compatible connections. We conclude that, in general, it is not possible to elaborate self-consistent models of geometric evolution with arbitrary Finsler metric non-compatible connections.


2017 ◽  
Vol 2019 (14) ◽  
pp. 4431-4468 ◽  
Author(s):  
Christoph Böhm ◽  
Ramiro Lafuente ◽  
Miles Simon

AbstractWe prove uniform curvature estimates for homogeneous Ricci flows: For a solution defined on $[0,t]$ the norm of the curvature tensor at time $t$ is bounded by the maximum of $C(n)/t$ and $C(n)({\mathrm{scal}}(g(t)) - {\mathrm{scal}}(g(0)) )$. This is used to show that solutions with finite extinction time are Type I, immortal solutions are Type III and ancient solutions are Type I, with constants depending only on the dimension $n$. A further consequence is that a non-collapsed homogeneous ancient solution on a compact homogeneous space emerges from a unique Einstein metric on that space. The above curvature estimates follow from a gap theorem for Ricci-flatness on homogeneous spaces. This theorem is proved by contradiction, using a local $W^{2,p}$ convergence result which holds without symmetry assumptions.


Sign in / Sign up

Export Citation Format

Share Document