canonical metric
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
pp. 2150088
Author(s):  
Jyotishman Bhowmick ◽  
Debashish Goswami ◽  
Soumalya Joardar

Given a tame differential calculus over a noncommutative algebra [Formula: see text] and an [Formula: see text]-bilinear metric [Formula: see text] consider the conformal deformation [Formula: see text] [Formula: see text] being an invertible element of [Formula: see text] We prove that there exists a unique connection [Formula: see text] on the bimodule of one-forms of the differential calculus which is torsionless and compatible with [Formula: see text] We derive a concrete formula connecting [Formula: see text] and the Levi-Civita connection for the metric [Formula: see text] As an application, we compute the Ricci and scalar curvatures for a general conformal perturbation of the canonical metric on the noncommutative [Formula: see text]-torus as well as for a natural metric on the quantum Heisenberg manifold. For the latter, the scalar curvature turns out to be a negative constant.



2020 ◽  
Vol 32 (10) ◽  
pp. 2050032 ◽  
Author(s):  
Jyotishman Bhowmick ◽  
Debashish Goswami ◽  
Giovanni Landi

We prove a Koszul formula for the Levi-Civita connection for any pseudo-Riemannian bilinear metric on a class of centered bimodule of noncommutative one-forms. As an application to the Koszul formula, we show that our Levi-Civita connection is a bimodule connection. We construct a spectral triple on a fuzzy sphere and compute the scalar curvature for the Levi-Civita connection associated to a canonical metric.



2018 ◽  
Vol 62 (3) ◽  
pp. 509-523
Author(s):  
Libing Huang ◽  
Xiaohuan Mo

AbstractIn this paper, we study a class of homogeneous Finsler metrics of vanishing $S$-curvature on a $(4n+3)$-dimensional sphere. We find a second order ordinary differential equation that characterizes Einstein metrics with constant Ricci curvature $1$ in this class. Using this equation we show that there are infinitely many homogeneous Einstein metrics on $S^{4n+3}$ of constant Ricci curvature $1$ and vanishing $S$-curvature. They contain the canonical metric on $S^{4n+3}$ of constant sectional curvature $1$ and the Einstein metric of non-constant sectional curvature given by Jensen in 1973.



2017 ◽  
Vol 48 (6) ◽  
pp. 771
Author(s):  
Li Jiayu ◽  
Zhang Chuanjing ◽  
Zhang Xi


2015 ◽  
Vol 11 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Modjtaba Ghorbani ◽  
Sandi Klavžar


Author(s):  
Izu Vaisman

Abstract We define a class of metrics that extend the Sasaki metric of the tangent manifold of a Riemannian manifold. The new metrics are obtained by the transfer of the generalized (pseudo-)Riemannian metrics of the pullback bundle π−1(TM⊕T*M), where π : T M → M is the natural projection. We obtain the expression of the transferred metric and define a canonical metric connection with torsion. We calculate the torsion, curvature and Ricci curvature of this connection and give a few applications of the results. We also discuss the transfer of generalized complex and generalized Kähler structures from the pullback bundle to the tangent manifold.



2014 ◽  
Vol 92 (12) ◽  
pp. 1709-1713
Author(s):  
Luis Santiago Ridao ◽  
Rodrigo Avalos ◽  
Martín Daniel De Cicco ◽  
Mauricio Bellini

We explore the geodesic movement on an effective four-dimensional hypersurface that is embedded in a five-dimensional Ricci-flat manifold described by a canonical metric, to applying to planetary orbits in our solar system. Some important solutions are given, which provide the standard solutions of general relativity without any extra force component. We study the perihelion advances of Mercury, the Earth, and Pluto using the extended theory of general relativity. Our results are in very good agreement with observations and show how the foliation is determinant to the value of the perihelion’s advances. Possible applications are not limited to these kinds of orbits.



2014 ◽  
Vol 150 (12) ◽  
pp. 2112-2126 ◽  
Author(s):  
Pierre Jammes

AbstractWe prove that on any compact manifold $M^{n}$ with boundary, there exists a conformal class $C$ such that for any Riemannian metric $g\in C$ of unit volume, the first positive eigenvalue of the Neumann Laplacian satisfies ${\it\lambda}_{1}(M^{n},g)<n\,\text{Vol}(S^{n},g_{\text{can}})^{2/n}$. We also prove a similar inequality for the first positive Steklov eigenvalue. The proof relies on a handle decomposition of the manifold. We also prove that the conformal volume of $(M,C)$ is $\text{Vol}(S^{n},g_{\text{can}})$, and that the Friedlander–Nadirashvili invariant and the Möbius volume of $M$ are equal to those of the sphere. If $M$ is a domain in a space form, $C$ is the conformal class of the canonical metric.



2013 ◽  
Vol 96 (1) ◽  
pp. 127-144 ◽  
Author(s):  
ANA MENEZES

AbstractIn this paper we prove the existence of complete minimal surfaces in some metric semidirect products. These surfaces are similar to the doubly and singly periodic Scherk minimal surfaces in ${ \mathbb{R} }^{3} $. In particular, we obtain these surfaces in the Heisenberg space with its canonical metric, and in ${\mathrm{Sol} }_{3} $ with a one-parameter family of nonisometric metrics.



Sign in / Sign up

Export Citation Format

Share Document