scholarly journals Fair allocation of conflicting items

2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Halvard Hummel ◽  
Magnus Lie Hetland

AbstractWe study fair allocation of indivisible items, where the items are furnished with a set of conflicts, and agents are not permitted to receive conflicting items. This kind of constraint captures, for example, participating in events that overlap in time, or taking on roles in the presence of conflicting interests. We demonstrate, both theoretically and experimentally, that fairness characterizations such as EF1, MMS and MNW still are applicable and useful under item conflicts. Among other existence, non-existence and computability results, we show that a $$1/\Delta $$ 1 / Δ -approximate MMS allocation for n agents may be found in polynomial time when $$n>\Delta >2$$ n > Δ > 2 , for any conflict graph with maximum degree $$\Delta$$ Δ , and that, if $$n > \Delta $$ n > Δ , a 1/3-approximate MMS allocation always exists.

Author(s):  
Haris Aziz ◽  
Simon Rey

We consider a multi-agent resource allocation setting in which an agent's utility may decrease or increase when an item is allocated. We take the group envy-freeness concept that is well-established in the literature and present stronger and relaxed versions that are especially suitable for the allocation of indivisible items. Of particular interest is a concept called group envy-freeness up to one item (GEF1). We then present a clear taxonomy of the fairness concepts. We study which fairness concepts guarantee the existence of a fair allocation under which preference domain. For two natural classes of additive utilities, we design polynomial-time algorithms to compute a GEF1 allocation. We also prove that checking whether a given allocation satisfies GEF1 is coNP-complete when there are either only goods, only chores or both.


2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


2010 ◽  
Vol Vol. 12 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Mieczyslaw Borowiecki ◽  
Anna Fiedorowicz ◽  
Katarzyna Jesse-Jozefczyk ◽  
Elzbieta Sidorowicz

Graphs and Algorithms International audience A k-colouring of a graph G is called acyclic if for every two distinct colours i and j, the subgraph induced in G by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, there are no bichromatic alternating cycles. In 1999 Boiron et al. conjectured that a graph G with maximum degree at most 3 has an acyclic 2-colouring such that the set of vertices in each colour induces a subgraph with maximum degree at most 2. In this paper we prove this conjecture and show that such a colouring of a cubic graph can be determined in polynomial time. We also prove that it is an NP-complete problem to decide if a graph with maximum degree 4 has the above mentioned colouring.


Algorithmica ◽  
2021 ◽  
Author(s):  
Britta Dorn ◽  
Ronald de Haan ◽  
Ildikó Schlotter

AbstractWe consider the following control problem on fair allocation of indivisible goods. Given a set I of items and a set of agents, each having strict linear preferences over the items, we ask for a minimum subset of the items whose deletion guarantees the existence of a proportional allocation in the remaining instance; we call this problem Proportionality by Item Deletion (PID). Our main result is a polynomial-time algorithm that solves PID for three agents. By contrast, we prove that PID is computationally intractable when the number of agents is unbounded, even if the number k of item deletions allowed is small—we show that the problem is $${\mathsf {W}}[3]$$ W [ 3 ] -hard with respect to the parameter k. Additionally, we provide some tight lower and upper bounds on the complexity of PID when regarded as a function of |I| and k. Considering the possibilities for approximation, we prove a strong inapproximability result for PID. Finally, we also study a variant of the problem where we are given an allocation $$\pi $$ π in advance as part of the input, and our aim is to delete a minimum number of items such that $$\pi $$ π is proportional in the remainder; this variant turns out to be $${{\mathsf {N}}}{{\mathsf {P}}}$$ N P -hard for six agents, but polynomial-time solvable for two agents, and we show that it is $$\mathsf {W[2]}$$ W [ 2 ] -hard when parameterized by the number k of


2021 ◽  
Vol 9 (3) ◽  
pp. 1-39
Author(s):  
Mithun Chakraborty ◽  
Ayumi Igarashi ◽  
Warut Suksompong ◽  
Yair Zick

We introduce and analyze new envy-based fairness concepts for agents with weights that quantify their entitlements in the allocation of indivisible items. We propose two variants of weighted envy-freeness up to one item (WEF1): strong , where envy can be eliminated by removing an item from the envied agent’s bundle, and weak , where envy can be eliminated either by removing an item (as in the strong version) or by replicating an item from the envied agent’s bundle in the envying agent’s bundle. We show that for additive valuations, an allocation that is both Pareto optimal and strongly WEF1 always exists and can be computed in pseudo-polynomial time; moreover, an allocation that maximizes the weighted Nash social welfare may not be strongly WEF1, but it always satisfies the weak version of the property. Moreover, we establish that a generalization of the round-robin picking sequence algorithm produces in polynomial time a strongly WEF1 allocation for an arbitrary number of agents; for two agents, we can efficiently achieve both strong WEF1 and Pareto optimality by adapting the adjusted winner procedure. Our work highlights several aspects in which weighted fair division is richer and more challenging than its unweighted counterpart.


Author(s):  
P. Renjith ◽  
N. Sadagopan

For an optimization problem known to be NP-Hard, the dichotomy study investigates the reduction instances to determine the line separating polynomial-time solvable vs NP-Hard instances (easy vs hard instances). In this paper, we investigate the well-studied Hamiltonian cycle problem (HCYCLE), and present an interesting dichotomy result on split graphs. T. Akiyama et al. (1980) have shown that HCYCLE is NP-complete on planar bipartite graphs with maximum degree [Formula: see text]. We use this result to show that HCYCLE is NP-complete for [Formula: see text]-free split graphs. Further, we present polynomial-time algorithms for Hamiltonian cycle in [Formula: see text]-free and [Formula: see text]-free split graphs. We believe that the structural results presented in this paper can be used to show similar dichotomy result for Hamiltonian path problem and other variants of Hamiltonian cycle (path) problems.


2019 ◽  
Vol 64 ◽  
pp. 1-20 ◽  
Author(s):  
Alireza Farhadi ◽  
Mohammad Ghodsi ◽  
Mohammad Taghi Hajiaghayi ◽  
Sébastien Lahaie ◽  
David Pennock ◽  
...  

We study fair allocation of indivisible goods to agents with unequal entitlements. Fair allocation has been the subject of many studies in both divisible and indivisible settings. Our emphasis is on the case where the goods are indivisible and agents have unequal entitlements. This problem is a generalization of the work by Procaccia and Wang (2014) wherein the agents are assumed to be symmetric with respect to their entitlements. Although Procaccia and Wang show an almost fair (constant approximation) allocation exists in their setting, our main result is in sharp contrast to their observation. We show that, in some cases with n agents, no allocation can guarantee better than 1/n approximation of a fair allocation when the entitlements are not necessarily equal. Furthermore, we devise a simple algorithm that ensures a 1/n approximation guarantee. Our second result is for a restricted version of the problem where the valuation of every agent for each good is bounded by the total value he wishes to receive in a fair allocation. Although this assumption might seem without loss of generality, we show it enables us to find a 1/2 approximation fair allocation via a greedy algorithm. Finally, we run some experiments on real-world data and show that, in practice, a fair allocation is likely to exist. We also support our experiments by showing positive results for two stochastic variants of the problem, namely stochastic agents and stochastic items.


2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Gábor Bacsó ◽  
Zsolt Tuza

Graphs and Algorithms International audience A clique-transversal set in a graph is a subset of the vertices that meets all maximal complete subgraphs on at least two vertices. We prove that every connected graph of order n and maximum degree three has a clique-transversal set of size left perpendicular19n/30 + 2/15right perpendicular. This bound is tight, since 19n/30 - 1/15 is a lower bound for infinitely many values of n. We also prove that the vertex set of any connected claw-free graph of maximum degree at most four, other than an odd cycle longer than three, can be partitioned into two clique-transversal sets. The proofs of both results yield polynomial-time algorithms that find corresponding solutions.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Jan Kára ◽  
Jan Kratochvil ◽  
David R. Wood

Graphs and Algorithms International audience We consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was recently introduced by Biedl et al. [Discrete Applied Math. 148:27―48, 2005]. They proved that the problem is solvable in polynomial time for graphs with maximum degree three, but NP-hard for graphs with maximum degree six. One of our main results is to close the gap in these results, by proving NP-hardness for graphs with maximum degree four. Furthermore, we prove that the problem remains NP-hard for planar graphs with maximum degree four and for 5-regular graphs. On the other hand, we introduce a polynomial time algorithm that determines whetherthere is a vertex ordering with total imbalance smaller than a fixed constant, and a polynomial time algorithm that determines whether a given multigraph with even degrees has an 'almost balanced' ordering.


1998 ◽  
Vol 7 (4) ◽  
pp. 375-386 ◽  
Author(s):  
THOMAS EMDEN-WEINERT ◽  
STEFAN HOUGARDY ◽  
BERND KREUTER

For any integer k, we prove the existence of a uniquely k-colourable graph of girth at least g on at most k12(g+1) vertices whose maximal degree is at most 5k13. From this we deduce that, unless NP=RP, no polynomial time algorithm for k-Colourability on graphs G of girth g(G)[ges ]log[mid ]G[mid ]/13logk and maximum degree Δ(G)[les ]6k13 can exist. We also study several related problems.


Sign in / Sign up

Export Citation Format

Share Document