scholarly journals Empirically grounded agent-based models of innovation diffusion: a critical review

2017 ◽  
Vol 52 (1) ◽  
pp. 707-741 ◽  
Author(s):  
Haifeng Zhang ◽  
Yevgeniy Vorobeychik
2020 ◽  
Author(s):  
Simon Johanning ◽  
Fabian Scheller ◽  
Daniel Abitz ◽  
Claudius Wehner ◽  
Thomas Bruckner

Abstract Understanding how innovations are accepted in a dynamic and complex market environment is a crucial factor for competitive advantage. To understand the relevant factors for this diffusion and to predict success, empirically grounded agent-based models have become increasingly popular in recent years. Despite the popularity of these innovation diffusion models, no common framework that integrates their diversity exists. This article presents a flexible, modular and extensible common description and implementation framework that allows to depict the large variety of model components found in existing models. The framework aims to provide a theoretically grounded description and implementation framework for empirically grounded agent-based models of innovation diffusion. It identifies 30 component requirements to conceptualize an integrated formal framework description. Based on this formal description, a java-based implementation allowing for flexible configuration of existing and future models of innovation diffusion is developed. As a variable decision support tool in decision-making processes on the adoption of innovations the framework is valuable for the investigation of a range of research questions on innovation diffusion, business model evaluation and infrastructure transformation.


2020 ◽  
Author(s):  
Simon Johanning ◽  
Fabian Scheller ◽  
Daniel Abitz ◽  
Claudius Wehner ◽  
Thomas Bruckner

Abstract Understanding how innovations are accepted in a dynamic and complex market environment is a crucial factor for competitive advantage. To understand the relevant factors for this diffusion and to predict success, empirically grounded agent-based models have become increasingly popular in recent years. Despite the popularity of these innovation diffusion models, no common framework that integrates their diversity exists. This article presents a flexible, modular and extensible common description and implementation framework that allows to depict the large variety of model components found in existing models. The framework aims to provide a theoretically grounded description and implementation framework for empirically grounded agent-based models of innovation diffusion. It identifies 30 component requirements to conceptualize an integrated formal framework description. Based on this formal description, a java-based implementation allowing for flexible configuration of existing and future models of innovation diffusion is developed. As a variable decision support tool in decision-making processes on the adoption of innovations the framework is valuable for the investigation of a range of research questions on innovation diffusion, business model evaluation and infrastructure transformation.


Author(s):  
Simon Johanning ◽  
Fabian Scheller ◽  
Daniel Abitz ◽  
Claudius Wehner ◽  
Thomas Bruckner

Abstract Understanding how innovations are accepted in a dynamic and complex market environment is a crucial factor for competitive advantage. To understand the relevant factors for this diffusion and to predict success, empirically grounded agent-based models have become increasingly popular in recent years. Despite the popularity of these innovation diffusion models, no common framework that integrates their diversity exists. This article presents a flexible, modular and extensible common description and implementation framework that allows to depict the large variety of model components found in existing models. The framework aims to provide a theoretically grounded description and implementation framework for empirically grounded agent-based models of innovation diffusion. It identifies 30 component requirements to conceptualize an integrated formal framework description. Based on this formal description, a java-based implementation allowing for flexible configuration of existing and future models of innovation diffusion is developed. As a variable decision support tool in decision-making processes on the adoption of innovations the framework is valuable for the investigation of a range of research questions on innovation diffusion, business model evaluation and infrastructure transformation.


2008 ◽  
Vol 11 (02) ◽  
pp. 261-272 ◽  
Author(s):  
SAMUEL THIRIOT ◽  
JEAN-DANIEL KANT

A lot of agent-based models were built to study diffusion of innovations. In most of these models, beliefs of individuals about the innovation were not represented at all, or in a highly simplified way. In this paper, we argue that representing beliefs could help to tackle problematics identified for diffusion of innovations, like misunderstanding of information, which can lead to diffusion failure, or diffusion of linked inventions. We propose a formalization of beliefs and messages as associative networks. This representation allows one to study the social representations of innovations and to validate diffusion models against real data. It could also make models usable to analyze diffusion prior to the product launch. Our approach is illustrated by a simulation of iPod™ diffusion.


2021 ◽  
Vol 9 (2) ◽  
pp. 417
Author(s):  
Sherli Koshy-Chenthittayil ◽  
Linda Archambault ◽  
Dhananjai Senthilkumar ◽  
Reinhard Laubenbacher ◽  
Pedro Mendes ◽  
...  

The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.


Sign in / Sign up

Export Citation Format

Share Document