scholarly journals On Quiver Grassmannians and Orbit Closures for Gen-Finite Modules

Author(s):  
Matthew Pressland ◽  
Julia Sauter

AbstractWe show that endomorphism rings of cogenerators in the module category of a finite-dimensional algebra A admit a canonical tilting module, whose tilted algebra B is related to A by a recollement. Let M be a gen-finite A-module, meaning there are only finitely many indecomposable modules generated by M. Using the canonical tilts of endomorphism algebras of suitable cogenerators associated to M, and the resulting recollements, we construct desingularisations of the orbit closure and quiver Grassmannians of M, thus generalising all results from previous work of Crawley-Boevey and the second author in 2017. We provide dual versions of the key results, in order to also treat cogen-finite modules.

2020 ◽  
Vol 296 (3-4) ◽  
pp. 1157-1183 ◽  
Author(s):  
Jenny August

Abstract We prove that the stable endomorphism rings of rigid objects in a suitable Frobenius category have only finitely many basic algebras in their derived equivalence class and that these are precisely the stable endomorphism rings of objects obtained by iterated mutation. The main application is to the Homological Minimal Model Programme. For a 3-fold flopping contraction $$f :X \rightarrow {\mathrm{Spec}\;}\,R$$ f : X → Spec R , where X has only Gorenstein terminal singularities, there is an associated finite dimensional algebra $$A_{{\text {con}}}$$ A con known as the contraction algebra. As a corollary of our main result, there are only finitely many basic algebras in the derived equivalence class of $$A_{\text {con}}$$ A con and these are precisely the contraction algebras of maps obtained by a sequence of iterated flops from f. This provides evidence towards a key conjecture in the area.


Author(s):  
Claus Michael Ringel

Let [Formula: see text] be a finite-dimensional algebra. If [Formula: see text] is self-injective, then all modules are reflexive. Marczinzik recently has asked whether [Formula: see text] has to be self-injective in case all the simple modules are reflexive. Here, we exhibit an 8-dimensional algebra which is not self-injective, but such that all simple modules are reflexive (actually, for this example, the simple modules are the only non-projective indecomposable modules which are reflexive). In addition, we present some properties of simple reflexive modules in general. Marczinzik had motivated his question by providing large classes [Formula: see text] of algebras such that any algebra in [Formula: see text] which is not self-injective has simple modules which are not reflexive. However, as it turns out, most of these classes have the property that any algebra in [Formula: see text] which is not self-injective has simple modules which are not even torsionless.


2013 ◽  
Vol 150 (3) ◽  
pp. 415-452 ◽  
Author(s):  
Takahide Adachi ◽  
Osamu Iyama ◽  
Idun Reiten

AbstractThe aim of this paper is to introduce $\tau $-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field $k$ is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras $kQ$, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support) $\tau $-tilting modules, and show that an almost complete support $\tau $-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional $k$-algebra $\Lambda $, we establish bijections between functorially finite torsion classes in $ \mathsf{mod} \hspace{0.167em} \Lambda $, support $\tau $-tilting modules and two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$. Moreover, these objects correspond bijectively to cluster-tilting objects in $ \mathcal{C} $ if $\Lambda $ is a 2-CY tilted algebra associated with a 2-CY triangulated category $ \mathcal{C} $. As an application, we show that the property of having two complements holds also for two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$.


Author(s):  
Karin Erdmann ◽  
Stacey Law

AbstractLet A be a finite-dimensional algebra over an algebraically closed field. We use a functorial approach involving torsion pairs to construct embeddings of endomorphism algebras of basic projective A–modules P into those of the torsion submodules of P. As an application, we show that blocks of both the classical and quantum Schur algebras S(2,r) and Sq(2,r) in characteristic p > 0 are Morita equivalent as quasi-hereditary algebras to their Ringel duals if they contain 2pk simple modules for some k.


Author(s):  
Jeremy Rickard ◽  
Aidan Schofield

We recall [5] that a module T for a finite-dimensional algebra Λ is called a tilting module if(i) T has protective dimension one;(ii) (iii) there is a short exact sequence 0 → Λ → T0 → T1 → 0 with T0 and T1 in add (T), the category of direct summands of direct sums of copies of T.


1987 ◽  
Vol 30 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ibrahim Assem

AbstractLet A be a finite-dimensional algebra over an algebraically closed field. By module is meant a finitely generated right module. A module T^ is called a tilting module if and there exists an exact sequence 0 → A^ → T' → T" → 0 with T'. T" direct sums of summands of T. Let B = End T^·T^ is called separating (respectively, splitting) if every indecomposable A-module M (respectively, B-module N) is such that either Hom^(T,M) = 0 or (respectively, N ⊗ T = 0 or . We prove that A is hereditary provided the quiver of A has no oriented cycles and every separating tilting module is splitting.


2019 ◽  
Vol 2019 (756) ◽  
pp. 183-226 ◽  
Author(s):  
David Eisenbud ◽  
Bernd Ulrich

AbstractWe prove duality results for residual intersections that unify and complete results of van Straten, Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt.Suppose that I is an ideal of codimension g in a Gorenstein ring, and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s. Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K}.In the first part of the paper we prove, among other things, that under suitable hypotheses on I, the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dual to one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}}.In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant.


2018 ◽  
Vol 28 (5) ◽  
pp. 339-344
Author(s):  
Andrey V. Zyazin ◽  
Sergey Yu. Katyshev

Abstract Necessary conditions for power commuting in a finite-dimensional algebra over a field are presented.


Author(s):  
Michael Larsen ◽  
Aner Shalev

Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon,


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


Sign in / Sign up

Export Citation Format

Share Document