Positive Solutions of a Nonlocal and Nonvariational Elliptic Problem

2021 ◽  
Vol 41 (5) ◽  
pp. 1764-1776
Author(s):  
Lingjun Liu ◽  
Feilin Shi
2015 ◽  
Vol 126 (1) ◽  
pp. 341-357 ◽  
Author(s):  
Mónica Clapp ◽  
Jorge Faya ◽  
Angela Pistoia

2012 ◽  
Vol 14 (03) ◽  
pp. 1250021 ◽  
Author(s):  
FRANCISCO ODAIR DE PAIVA

This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem [Formula: see text] where Ω is a bounded domain of ℝN, λ ∈ ℝ and g(x, u) is a Carathéodory function. The obtained results apply to the following classes of nonlinearities: a(x)uq + b(x)up and c(x)(1 + u)p (0 ≤ q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.


2003 ◽  
Vol 05 (05) ◽  
pp. 737-759 ◽  
Author(s):  
NOBUYOSHI FUKAGAI ◽  
KIMIAKI NARUKAWA

This paper deals with positive solutions of a class of nonlinear eigenvalue problems. For a quasilinear elliptic problem (#) - div (ϕ(|∇u|)∇u) = λf(x,u) in Ω, u = 0 on ∂Ω, we assume asymptotic conditions on ϕ and f such as ϕ(t) ~ tp0-2, f(x,t) ~ tq0-1as t → +0 and ϕ(t) ~ tp1-2, f(x,t) ~ tq1-1as t → ∞. The combined effects of sub-nonlinearity (p0> q0) and super-nonlinearity (p1< q1) with the subcritical term f(x,u) imply the existence of at least two positive solutions of (#) for 0 < λ < Λ.


2006 ◽  
Vol 55 (6) ◽  
pp. 1835-1856 ◽  
Author(s):  
Marcelo Furtado ◽  
Giovany Malcher Figueiredo

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Zonghu Xiu ◽  
Caisheng Chen

The paper considers the existence of multiple solutions of the singular nonlocal elliptic problem , ,   = , on , where , . By the variational method on the Nehari manifold, we prove that the problem has at least two positive solutions when some conditions are satisfied.


2015 ◽  
Vol 17 (02) ◽  
pp. 1450029 ◽  
Author(s):  
Silvia Cingolani ◽  
Giuseppina Vannella ◽  
Daniela Visetti

We consider a compact, connected, orientable, boundaryless Riemannian manifold (M, g) of class C∞ where g denotes the metric tensor. Let n = dim M ≥ 3. Using Morse techniques, we prove the existence of [Formula: see text] nonconstant solutions u ∈ H1,p(M) to the quasilinear problem [Formula: see text] for ε > 0 small enough, where 2 ≤ p < n, p < q < p*, p* = np/(n - p) and [Formula: see text] is the p-laplacian associated to g of u (note that Δ2,g = Δg) and [Formula: see text] denotes the Poincaré polynomial of M. We also establish results of genericity of nondegenerate solutions for the quasilinear elliptic problem (Pε).


Sign in / Sign up

Export Citation Format

Share Document