Interval reliability for aggregated Markov repairable system with repair time omission

2013 ◽  
Vol 212 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Baoliang Liu ◽  
Lirong Cui ◽  
Yanqing Wen
1990 ◽  
Vol 30 (3) ◽  
pp. 507-509
Author(s):  
G.K. Agrafiotis ◽  
P.R. Parthasarathy ◽  
M. Sharafali

Author(s):  
Raosaheb V. Latpate ◽  
Babasaheb K. Thorve

In this paper, we consider the arithmetico-geometric process (AGP) repair model. Here, the system has two nonidentical component cold standby repairable system with one repairman. Under this study, component 1 has given priority in use. It is assumed that component 2 after repair is as good as new, whereas the component 1 follows AGP. Under these assumptions, by using AGP repair model, we present a replacement policy based on number of failures, [Formula: see text], of component 1 such that long-run expected reward per unit time is maximized. For this policy, system can be replaced when number of failure of the component 1 reaches to [Formula: see text]. Working time of the component 1 is AGP and it is stochastically decreasing whereas repair time of the component 1 is AGP which is stochastically increasing. The expression for long-run expected reward per unit time for a renewal cycle is derived and illustrated proposed policy with numerical examples by assuming Weibull distributed working time and repair time of the component 1. Also, proposed AGP repair model is compared with the geometric process repair model.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Liying Wang ◽  
Qing Yang ◽  
Yuran Tian

Star repairable systems with spatial dependence consist of a center component and several peripheral components. The peripheral components are arranged around the center component, and the performance of each component depends on its spatial “neighbors.” Vector-Markov process is adapted to describe the performance of the system. The state space and transition rate matrix corresponding to the 6-component star Markov repairable system with spatial dependence are presented via probability analysis method. Several reliability indices, such as the availability, the probabilities of visiting the safety, the degradation, the alert, and the failed state sets, are obtained by Laplace transform method and a numerical example is provided to illustrate the results.


2003 ◽  
Vol 40 (3) ◽  
pp. 643-653 ◽  
Author(s):  
Suyono ◽  
J. A. M. van der Weide

In this paper we derive the distribution of the total downtime of a repairable system during a given time interval. We allow dependence of the failure time and the repair time. The results are presented in the form of Laplace transforms which can be inverted numerically. We also discuss asymptotic properties of the total downtime.


2005 ◽  
Vol 22 (04) ◽  
pp. 555-582 ◽  
Author(s):  
JAU-CHUAN KE ◽  
CHUEN-HORNG LIN

The main purpose of this paper is to study the reliability and availability of a system with M operating devices, m spares, and an imperfect service station that takes vacations. Specifically, once there are no failed devices in the system, the service station takes consecutive vacations until there is at least one failed device upon its return from vacation. The service station may break down and require repair at a repair facility. This paper derives the reliability, the mean time to system failure, the availability, and failure frequency of the K-out-of-M + m system. Numerical simulation of the impacts of system parameters as well as sensitivity analysis for the reliability, the mean time to system failure, the availability and failure frequency is performed.


2019 ◽  
Vol 37 (3) ◽  
pp. 1043-1071
Author(s):  
Chandra Shekhar ◽  
Amit Kumar ◽  
Shreekant Varshney ◽  
Sherif I. Ammar

Purpose The internet of things and just-in-time are the embryonic model of innovation for the state-of-the-art design of the service system. This paper aims to develop a fault-tolerant machining system with active and standby redundancy. The availability of the fault-tolerant redundant repairable system is a key concern in the successful deployment of the service system. Design/methodology/approach In this paper, the authors cogitate a fault-tolerant redundant repairable system of finite working units along with warm standby unit provisioning. Working unit and standby unit are susceptible to random failures, which interrupt the quality-of-service. The system is also prone to common cause failure, which tends its catastrophe. The instantaneous repair of failed unit guarantees the increase in the availability of the unit/system. The time-to-repair by the single service facility for the failed unit follows the arbitrary distribution. For increasing the practicability of the studied model, the authors have also incorporated real-time machining practices such as imperfect coverage of the failure of units, switching failure of standby unit, common cause failure, reboot delay, switch over delay, etc. Findings For deriving the explicit expression for steady-state probabilities of the system, the authors use a supplementary variable technique for which the only required input is the Laplace–Stieltjes transform (LST) of the repair time distribution. Research limitations/implications For complex and multi-parameters distribution of repair time, derivation of performance measures is not possible. The authors prefer numerical simulation because of its importance in the application for real-time uses. Practical implications The stepwise recursive procedure, illustrative examples, and numerical results have been presented for the diverse category of repair time distribution: exponential (M), n-stage Erlang (Ern), deterministic (D), uniform (U(a,b)), n-stage generalized Erlang (GE[n]) and hyperexponential (HE[n]). Social implications Concluding remarks and future scopes have also been included. The studied fault-tolerant redundant repairable system is suitable for reliability analysis of a computer system, communication system, manufacturing system, software reliability, service system, etc. Originality/value As per the survey in literature, no previous published paper is presented with so wide range of repair time distribution in the machine repair problem. This paper is valuable for system design for reliability analysis of the fault-tolerant redundant repairable.


Sign in / Sign up

Export Citation Format

Share Document