Exiguobacterium algae sp. nov. and Exiguobacterium qingdaonense sp. nov., two novel moderately halotolerant bacteria isolated from the coastal algae

Author(s):  
Fangming Liu ◽  
Yangjie Li ◽  
Wenxuan He ◽  
Wenqi Wang ◽  
Jinshui Zheng ◽  
...  
2021 ◽  
Vol 9 (2) ◽  
pp. 105099
Author(s):  
Fabiana Lilian Martínez ◽  
Verónica Beatriz Rajal ◽  
Verónica Irazusta

2021 ◽  
Vol 11 (5) ◽  
pp. 2233
Author(s):  
Maria J. Ferreira ◽  
Angela Cunha ◽  
Sandro Figueiredo ◽  
Pedro Faustino ◽  
Carla Patinha ◽  
...  

Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes represents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia ramosissima is one of the least-studied species in terms of microbiome composition and the effect of sediment properties on the diversity of plant-growth promoting bacteria associated with the roots. In this work, we aimed at isolating and characterizing halotolerant bacteria associated with the rhizosphere and root tissues of S. ramosissima, envisaging their application in saline agriculture. Endophytic and rhizosphere bacteria were isolated from wild and crop cultivated plants, growing in different estuarine conditions. Isolates were identified based on 16S rRNA sequences and screened for plant-growth promotion traits. The subsets of isolates from different sampling sites were very different in terms of composition but consistent in terms of the plant-growth promoting traits represented. Bacillus was the most represented genus and expressed the wider range of extracellular enzymatic activities. Halotolerant strains of Salinicola, Pseudomonas, Oceanobacillus, Halomonas, Providencia, Bacillus, Psychrobacter and Brevibacterium also exhibited several plant-growth promotion traits (e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization). Considering the taxonomic diversity and the plant-growth promotion potential of the isolates, the collection represents a valuable resource that can be used to optimize the crop cultivation of Salicornia under different environmental conditions and for the attenuation of salt stress in non-halophytes, considering the global threat of arable soil salinization.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Francesca Mapelli ◽  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marta Barbato ◽  
Hanene Cherif ◽  
...  

Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres ofSalicorniaplants and bulk soils were collected fromSebkhetandChotthypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated withSalicorniaroot system. A large collection of 475 halophilic and halotolerant bacteria was established fromSalicorniarhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. TwentyHalomonasstrains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activitiesin vitroat 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using agfp-labelled strain it was possible to demonstrate thatHalomonasis capable of successfully colonisingSalicorniaroots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 941
Author(s):  
Van Khanh Nguyen ◽  
Myung-Gyu Ha ◽  
Ho Young Kang ◽  
Dinh Duc Nguyen

Manganese-oxidizing bacteria have been widely investigated for bioremediation of Mn-contaminated water sources and for production of biogenic Mn oxides that have extensive applications in environmental remediation. In this study, a total of 5 Mn-resistant bacteria were isolated from river water and investigated for Mn removal. Among them, Ochrobactrum sp. NDMn-6 exhibited the highest Mn removal efficiency (99.1%). The final precipitates produced by this strain were defined as a mixture of Mn2O3, MnO2, and MnCO3. Optimal Mn-removal performance by strain NDMn-6 was obtained at a temperature range of 25–30 °C and the salinity of 0.1–0.5%. More interestingly, strain NDMn-6 could be resistant to salinities of up to 5%, revealing that this strain could be possibly applied for Mn remediation of high salinity regions or industrial saline wastewaters. This study also revealed the potential of self-detoxification mechanisms, wherein river water contaminated with Mn could be cleaned by indigenous bacteria through an appropriate biostimulation scheme.


2020 ◽  
Vol 31 (4-6) ◽  
pp. 331-340
Author(s):  
Elen Aquino Perpetuo ◽  
Esther Cecília Nunes da Silva ◽  
Bruno Karolski ◽  
Claudio Augusto Oller do Nascimento

Meat Science ◽  
2005 ◽  
Vol 70 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Elena Rastelli ◽  
Giorgio Giraffa ◽  
Domenico Carminati ◽  
Giovanni Parolari ◽  
Silvana Barbuti

2012 ◽  
Vol 6 (10) ◽  
pp. 2419-2434 ◽  
Author(s):  
Willems Anne ◽  
De Vos Paul ◽  
El fahime ElMostafa ◽  
Swings Jean ◽  
Bendaou Najib ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document