scholarly journals Biological Manganese Removal by Novel Halotolerant Bacteria Isolated from River Water

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 941
Author(s):  
Van Khanh Nguyen ◽  
Myung-Gyu Ha ◽  
Ho Young Kang ◽  
Dinh Duc Nguyen

Manganese-oxidizing bacteria have been widely investigated for bioremediation of Mn-contaminated water sources and for production of biogenic Mn oxides that have extensive applications in environmental remediation. In this study, a total of 5 Mn-resistant bacteria were isolated from river water and investigated for Mn removal. Among them, Ochrobactrum sp. NDMn-6 exhibited the highest Mn removal efficiency (99.1%). The final precipitates produced by this strain were defined as a mixture of Mn2O3, MnO2, and MnCO3. Optimal Mn-removal performance by strain NDMn-6 was obtained at a temperature range of 25–30 °C and the salinity of 0.1–0.5%. More interestingly, strain NDMn-6 could be resistant to salinities of up to 5%, revealing that this strain could be possibly applied for Mn remediation of high salinity regions or industrial saline wastewaters. This study also revealed the potential of self-detoxification mechanisms, wherein river water contaminated with Mn could be cleaned by indigenous bacteria through an appropriate biostimulation scheme.

2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2020 ◽  
Vol 2 (1) ◽  
pp. 59

The determination of antibiotic-resistant bacteria in Klang river water in Klang valley is performed as the river exposed to various environments. The analysis is performed through enumeration, isolation, and identification process. The water samples were obtained from the origin of the river, housing region, and hospital region. The coliforms obtained through enumeration and identification was then used to determine antibiotic sensitivity, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC). The level of coliforms was indicated through the most probable number (MPN), which 70 MPN per 100 ml of river water in the origin of the river while housing and hospital regions showed more than 1600 MPN per 100 ml of river water. The results obtained from the antibiotic sensitivity test showed that the degree of resistance of coliforms is varied in different regions. The zone of inhibition to ampicillin and tetracyclin for coliforms in housing regions is 20 mm, while the coliforms in the hospital region are 6 mm and 7 mm, respectively. The overall results showed that the level of coliforms and the antibiotic sensitivity of coliforms are different in various regions. The coliforms in the hospital region are more resistant to antibiotics compared to the housing region.


2014 ◽  
Vol 32 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ramansu Goswami ◽  
Suprabhat Mukherjee ◽  
Vipin Singh Rana ◽  
Dhira Rani Saha ◽  
Rajagopal Raman ◽  
...  

2020 ◽  
Vol 1 (2) ◽  
pp. 85-90
Author(s):  
Hadis Tavafi

Nowadays, in the poultry industry, antibiotics are used to treat, prevent, and enhance poultry growth and production efficiency. Their irregular consumption has resulted in the spread of antibiotic-resistant bacteria in this industry. Antibiotic-resistant bacteria in contaminated waters can be transmitted into soil. The purpose of this study was to investigate the antibiotic resistance pattern of bacteria isolated from the water of chicken slaughterhouses around Hamadan (Iran) province. In this study, 20 water samples were collected from four slaughterhouses in Hamadan province (during spring and summer 2019). Initial isolation and identification of the bacteria were performed by pour plate culture and biochemical tests. The disc diffusion method was applied to investigate the resistance pattern. This study presents 109 screened isolates. Of these, 57.8% E.coli, 35.7% Salmonella spp., and 6.42% Klebsiella spp. were detected. Antibiograms of isolates showed that in E.coli, 23.09% were resistant to four types of the antibiotic tetracycline, amoxicillin, gentamicin, and chloramphenicol, 76.19% had only one type of antibiotic. Antibiotics for Salmonella spp. showed that 35.9% were resistant to tetracycline, gentamicin, and chloramphenicol, 64.10% to only one type of antibiotic. Also, in Klebsiella spp., 85.71% were sensitive to antibiotics, and only 14.28% were resistant to tetracycline. Conclusion: The results showed that the rate of multiple antibiotic resistance is relatively high, and contaminated water has a high potential for soil contamination. Therefore, resistant bacteria become more stable in the environment, and the health of the environment will be endangered. Therefore, it is necessary to study the antimicrobial resistance patterns of bacteria to study and maintain the health of the environment.


2020 ◽  
Vol 42 (3) ◽  
Author(s):  
Dau Thi Hong Ngoc ◽  
Ha Danh Duc ◽  
Nguyen Thi Dieu Thuy

Effects of various environmental conditions on propanil degrading activity of Acinetobacter baumannii DT were investigated. Results showed that both propanil degradation and bacterial growth rate were reduced when bacteria were cultured in extreme conditions, such as high acidic or alkaline levels or high salinity. Moreover, the propanil degradation activity of A. baumannii DT decreased in contaminated water. The propanil dissipation rate was higher in herbicides-contaminated soil (treated soil) than in herbicide-free soil. In soil inoculated with A. baumannii DT, propanil removal was enhanced. Even though the propanil degrading activity of A. baumannii DT were reduced under extremely stressful conditions, this bacterium retained a good potential to degrade propanil in real environmental conditions.  


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Rabia Baby ◽  
Bullo Saifullah ◽  
Mohd Zobir Hussein

Abstract Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document