resistant bacteria
Recently Published Documents


TOTAL DOCUMENTS

7331
(FIVE YEARS 3731)

H-INDEX

124
(FIVE YEARS 27)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Arbab ◽  
H. Ullah ◽  
X. Wei ◽  
W. Wang ◽  
S. U. Ahmad ◽  
...  

Abstract The objective of this study was to evaluate the effectiveness of common antibiotics against different microorganisms in apparently healthy cattle in Shandong province and its suburb. A total of 220 nasal swab samples were collected and cultured for bacteriological evaluation. All the bacteria isolates after preliminary identification were subjected to antibiogram studies following disc diffusion method. It was found in the study that E. coli is the most commonly associated isolate (21%), followed by Klebsiella spp. (18%), Pseudomonas aeruginosa (13%), Salmonella spp. (15%), Shigella spp (12%), and Proteus spp (11%). While the antibiogram studies reveled that highest number of bacterial isolates showed resistance to Ampicillin (95%), followed by Augmentin (91%), Cefuroxime (85%) and Tetracycline (95%) of (Escherichia coli and Klebsiella spp). In the case of pseudomonas spp. and Salmonella the highest resistance was showed by Ampicillin (90%) followed by Amoxicillin + Clavulanic Acid (80%), Cefixime (90%), and Erythromycin (80%). In Shigella spp and Salmonella spp highest resistance was showed by Amoxicillin, Ceftazidime, Augmentin (60%), and Amoxicillin + Clavulanic Acid (50%). It is concluded that in vitro antibiogram studies of bacterial isolates revealed higher resistance for Ampicillin, Augmentin, Cefuroxime, Cefixime, Tetracycline, Erythromycin, and Amoxicillin + Clavulanic Acid. The high multiple Antibiotics resistance indexes (MARI) observed in all the isolates in this study ranging from 0.6 to 0.9. MARI value of >0.2 is suggests multiple antibiotic resistant bacteria and indicate presence of highly resistant bacteria.


2023 ◽  
Vol 83 ◽  
Author(s):  
H. F. Rehman ◽  
A. Ashraf ◽  
S. Muzammil ◽  
M. H. Siddique ◽  
T. Ali

Abstract Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


2023 ◽  
Vol 83 ◽  
Author(s):  
Kalsoom ◽  
Afshan Batool ◽  
Ghufranud Din ◽  
Salah Ud Din ◽  
Johar Jamil ◽  
...  

Abstract Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (24˚52ʹ46.0ʺN 66˚59ʹ25.7ʺE and 24˚48ʹ37.5ʺN 67˚06ʹ52.6ʺE). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


2022 ◽  
Vol 45 ◽  
pp. 102507
Author(s):  
Ravi Kumar Chhetri ◽  
Diego Francisco Sanchez ◽  
Sabine Lindholst ◽  
Alexander Valentin Hansen ◽  
Jesper Sanderbo ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Akihisa Hata ◽  
Noboru Fujitani ◽  
Fumiko Ono ◽  
Yasuhiro Yoshikawa

AbstractThere is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli  (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.


BioTech ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Savanah Senn ◽  
Kelly Pangell ◽  
Adrianna L. Bowerman

The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Daturainoxia. We hypothesized that the microbes associated with the Datura rootzone would be significantly different than the similar surrounding fields in composition and function. We also hypothesized that rhizospheric and endophytic microbes would be associated with similar metabolic functions to the plant rootzone they inhabited. The methods employed were microbial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional analyses. A few of the main bacterial genera of interest that were differentially abundant in the Datura root microbiome were Flavobacterium (p = 0.007), Chitinophaga (p = 0.0007), Pedobacter (p = 6 × 10−5), Bradyhizobium (p = 1 × 10−8), and Paenibacillus (p = 1.46 × 10−6). There was significant evidence that the microbes associated with the Datura rootzone had elevated function related to bacterial chalcone synthase (p = 1.49 × 10−3) and permease genes (p < 0.003). There was some evidence that microbial functions in the Datura rootzone provided precursors to important plant bioactive molecules or were beneficial to plant growth. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is the first study to focus on the microbial ecology of the Datura rootzone. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.


2022 ◽  
Vol 9 ◽  
Author(s):  
Haojie Sun ◽  
Peng Lai ◽  
Wei Wu ◽  
Hao Heng ◽  
Shanwen Si ◽  
...  

Diabetes mellitus has become a major global health issue. Currently, the use of antibiotics remains the best foundational strategy in the control of diabetic foot infections. However, the lack of accurate identification of pathogens and the empirical use of antibiotics at early stages of infection represents a non-targeted treatment approach with a poor curative effect that may increase the of bacterial drug resistance. Therefore, the timely identification of drug resistant bacteria is the key to increasing the efficacy of treatments for diabetic foot infections. The traditional identification method is based on bacterial morphology, cell physiology, and biochemistry. Despite the simplicity and low costs associated with this method, it is time-consuming and has limited clinical value, which delays early diagnosis and treatment. In the recent years, MALDI-TOF MS has emerged as a promising new technology in the field of clinical microbial identification. In this study, we developed a strategy for the identification of drug resistance in the diagnosis of diabetic foot infections using a combination of macro-proteomics and MALDI MS analysis. The macro-proteomics result was utilized to determine the differential proteins in the resistance group and the corresponding peptide fragments were used as the finger print in a MALDI MS analysis. This strategy was successfully used in the research of drug resistance in patients with diabetic foot infections and achieved several biomarkers that could be used as a finger print for 4 different drugs, including ceftazidime, piperacillin, levofloxacin, and tetracycline. This method can quickly confirm the drug resistance of clinical diabetic foot infections, which can help aid in the early treatment of patients.


Author(s):  
Javad Nezhadi ◽  
Sepehr Taghizadeh ◽  
Ehsaneh Khodadadi ◽  
Mehdi Yousefi ◽  
Khudaverdi Ganbarov ◽  
...  

Abstract: The dramatically increasing levels of antibiotic resistance are being seen worldwide, and is a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-relevant technologies include the utilization of oligonucleotide molecules to interfere with gene expression, as a new technique for the treatment of antibiotic-resistant bacteria has been proposed antisense agents or nucleic acids analogs with antibacterial properties, which are commonly very short and their size almost 10-20 bases and can be hinted to peptide nucleic acids (PNAs), phosphorodiamidate morpholino oligomers (PPMOs) and locked nucleic acids (LNAs). This review highlights that PNAs, PPMOs, and LNAs target the genes that cause destroy the gene and inhibit the growth of bacteria. These results open a new perspective for therapeutic intervention. In future studies, it is necessary to examine different aspects of antisense agents, for example, safety, toxicity, and pharmacokinetic properties of antisense agents to be employed in clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document