An interacting and non-interacting two-fluid scenario for dark energy in FRW universe with constant deceleration parameter

2011 ◽  
Vol 333 (1) ◽  
pp. 343-350 ◽  
Author(s):  
Anirudh Pradhan ◽  
Hassan Amirhashchi ◽  
Bijan Saha
2013 ◽  
Vol 91 (2) ◽  
pp. 180-187 ◽  
Author(s):  
T. Singh ◽  
R. Chaubey

The open anisotropic cosmological model of the early Universe is considered. We study the evolution of the dark energy parameter within anisotropic Bianchi type-V cosmological model filled with barotropic fluid and dark energy. The solutions have been obtained for power law and exponential forms of the expansion parameter. (They correspond to constant deceleration parameter in general relativity.) For large time (i.e., t → ∞), the models tend asymptotically to an isotropic Friedmann–Robertson–Walker cosmological model under certain conditions.


2012 ◽  
Vol 342 (1) ◽  
pp. 257-267 ◽  
Author(s):  
Bijan Saha ◽  
Hassan Amirhashchi ◽  
Anirudh Pradhan

2011 ◽  
Vol 28 (3) ◽  
pp. 039801 ◽  
Author(s):  
Hassan Amirhashchi ◽  
Anirudh Pradhan ◽  
Bijan Saha

2016 ◽  
Vol 25 (03) ◽  
pp. 1650032 ◽  
Author(s):  
Abdulla Al Mamon ◽  
Sudipta Das

In this paper, we have considered a spatially flat FRW universe filled with pressureless matter and dark energy (DE). We have considered a phenomenological parametrization of the deceleration parameter [Formula: see text] and from this, we have reconstructed the equation-of-state (EoS) for DE [Formula: see text]. This divergence-free parametrization of the deceleration parameter is inspired from one of the most popular parametrization of the DE EoS given by Barboza and Alcaniz [see E. M. Barboza and J. S. Alcaniz, Phys. Lett. B 666 (2008) 415]. Using the combination of datasets (Type Ia Supernova (SN Ia) + Hubble + baryonic acoustic oscillations/cosmic microwave background (BAO/CMB)), we have constrained the transition redshift [Formula: see text] (at which the universe switches from a decelerating to an accelerating phase) and have found the best fit value of [Formula: see text]. We have also compared the reconstructed results of [Formula: see text] and [Formula: see text] and have found that the results are compatible with a [Formula: see text]CDM universe if we consider SN Ia + Hubble data, but inclusion of BAO/CMB data makes [Formula: see text] and [Formula: see text] incompatible with [Formula: see text]CDM model. The potential term for the present toy model is found to be functionally similar to a Higgs potential.


Sign in / Sign up

Export Citation Format

Share Document