dark energy model
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 101)

H-INDEX

46
(FIVE YEARS 6)

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Francisco X. Linares Cedeño ◽  
Nandan Roy ◽  
L. Arturo Ureña-López

2021 ◽  
Vol 2021 (12) ◽  
pp. 036
Author(s):  
Rui-Yun Guo ◽  
Lu Feng ◽  
Tian-Ying Yao ◽  
Xing-Yu Chen

Abstract We explore a scenario of interacting dynamical dark energy model with the interaction term Q including the varying equation-of-state parameter w. Using the data combination of the cosmic microwave background, the baryon acoustic oscillation, and the type Ia supernovae, to global fit the interacting dynamical dark energy model, we find that adding a factor of the varying w in the function of Q can change correlations between the coupling constant β and other parameters, and then has a huge impact on the fitting result of β. In this model, the fitting value of H 0 is lower at the 3.54σ level than the direct measurement value of H 0. Comparing to the case of interacting dynamical dark energy model with Q excluding w, the model with Q including the constant w is more favored by the current mainstream observation. To obtain higher fitting values of H 0 and narrow the discrepancy of H 0 between different observations, additional parameters including the effective number of relativistic species, the total neutrino mass, and massive sterile neutrinos are considered in the interacting dynamical dark energy cosmology. We find that the H 0 tension can be further reduced in these models, but is still at the about 3σ level.


2021 ◽  
pp. 2100065
Author(s):  
A. S. Agrawal ◽  
Francisco Tello‐Ortiz ◽  
B. Mishra ◽  
S.K. Tripathy

Author(s):  
Umesh Kumar Sharma ◽  
Vandna Srivastava

Within the framework of quantum gravity and modified entropy-area formalism, the Tsallis holographic dark energy is an effort to peep into a mysterious content of the Universe, the dark energy, to analyze its nature. The Tsallis parameter [Formula: see text] provides the main characteristic of the Tsallis holographic dark energy. Opting the value of Tsallis parameter [Formula: see text], a quintessence scalar field description of the Tsallis holographic dark energy model can be obtained. In this work, we present this quintessential explanation of the Tsallis holographic dark energy with [Formula: see text] and reconstruct the dynamics of the scalar field and the potential of quintessence.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1320
Author(s):  
Chao-Qiang Geng ◽  
Yan-Ting Hsu ◽  
Jhih-Rong Lu

We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R)=R−λRch[1−(1+R2/Rch2)−1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively. We modify CAMB and CosmoMC packages with the recent observational data to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK. In particular, we find the model and density parameters to be λ−1<0.283 at 68% C.L and ΩK=−0.00099−0.0042+0.0044 at 95% C.L, respectively. The best χ2 fitting result shows that χf(R)2≲χΛCDM2, indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.


2021 ◽  
Vol 36 (31) ◽  
Author(s):  
Koblandy Yerzhanov ◽  
Shynaray Myrzakul ◽  
Duman Kenzhalin ◽  
Martiros Khurshudyan

The phase space analysis has been used to probe the accelerated expansion of the Universe when [Formula: see text] dark energy interacts with cold dark matter. Non-gravitational interactions [Formula: see text] and [Formula: see text] considered in this work are one of the first models of sign changing interactions that appeared in the literature. Specific [Formula: see text] dark energy model with [Formula: see text] has been assumed and all late time scaling attractors have been found. This is a two-parameter model with [Formula: see text] and [Formula: see text] parameters to be determined, while [Formula: see text] is the deceleration parameter. In general the motivation to consider similar fluid models is directly related to the attempts to unify dark energy and dark matter involving the properties of the deceleration parameter. The previous study using similar dark energy model showed that the BOSS result for the expansion rate at [Formula: see text] can be explained without interaction with cold dark matter. In this way, the previous result provides a reasonable basis to organize future studies in this direction. This study is one of the first attempts in this direction. It should be mentioned that the full comparison of the models with observation data and the classification of future singularities have been left as a subject of a forthcoming paper. There are several ways that the model can be extended which also has been left as a subject of a forthcoming paper.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Weiqiang Yang ◽  
Eleonora Di Valentino ◽  
Supriya Pan ◽  
Arman Shafieloo ◽  
Xiaolei Li

Sign in / Sign up

Export Citation Format

Share Document