frw universe
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 70)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Yang Liu

Abstract In this article, we investigate the thermodynamic stability of the FRW universe for two examples, Tsallis entropy and loop quantum gravity, by considering non-extensive statistical mechanics. The heat capacity, free energy and pressure of the universe are obtained. For the Tsallis entropy model, we obtained the constraint for β, namely, 1/2 <β <2. The free energy of a thermal equilibrium universe must be less than zero. We suggest that the reason for the accelerated expansion of the universe is not due to Tsallis entropy. Similar results are obtained for loop quantum gravity. However, since the values of Λ(γ) and q cannot be determined in this model, the results become more subtle than that in the Tsallis entropy model. In addition, we compare the results for the universe with those for a Schwarzschild black hole.


Author(s):  
Umesh Kumar Sharma ◽  
Vipin Chandra Dubey

In this work, we study the Rényi holographic dark energy (RHDE) model in a flat FRW Universe where the infrared cut-off is taken care by the Hubble horizon and also by taking three different parametrizations of the interaction term between the dark matter and the dark energy. Analyzing graphically, the behavior of some cosmological parameters in particular deceleration parameter, equation of state (EoS) parameter, energy density parameter and squared speed of sound, in the process of the cosmic evolution, is found to be leading towards the late-time accelerated expansion of the RHDE model. Also, we find the departure for the derived models from the standard [Formula: see text]CDM model according to the evolution of jerk parameter. Moreover, we compare the model parameters by considering the observational Hubble data which consist of 51 points in the redshift range [Formula: see text].


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 428
Author(s):  
Sarfraz Ali ◽  
Muhammad Hummad Waheed ◽  
Muhammad Imran Asjad ◽  
Khuram Ali Khan ◽  
Thanin Sitthiwirattham ◽  
...  

The Sharma–Mittal holographic dark energy model is investigated in this paper using the Chern–Simons modified gravity theory. We investigate several cosmic parameters, including the deceleration, equation of state, square of sound speed, and energy density. According to the deceleration parameter, the universe is in an decelerating and expanding phase known as de Sitter expansion. The Sharma–Mittal HDE model supports a deceleration to acceleration transition that is compatible with the observational data. The EoS depicts the universe’s dominance era through a number of components, such as ω=0, 13, 1, which indicate that the universe is influenced by dust, radiation, and stiff fluid, while −1<ω<13, ω=−1, and ω<−1 are conditions for quintessence DE, ΛCDM, and Phantom era dominance. Our findings indicate that the universe is in an accelerated expansion phase, and this is similar to the observational data.


Author(s):  
Archana Dixit ◽  
Vinod Kumar Bhardwaj ◽  
Anirudh Pradhan
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 779-784
Author(s):  
P. Das ◽  
K. P. Singh

In this paper, we study the Polytropic Gas Dark Energy model and New Agegraphic Dark Energy model in the flat Friedmann Robertson Walker (FRW) Universe and establish a correspondence between them for the scalar fields. This correspondence allows reconstructing the potential of the Polytropic Gas scalar fields and dynamics of the scalar fields according to the evolutions of the New Agegraphic Dark Energy, which describes the accelerated expansion of the Universe.


Author(s):  
Ashutosh Singh ◽  
Rakesh Raushan ◽  
R. Chaubey

We investigate the dynamical evolution of homogeneous and isotropic flat-FRW universe filled with a barotropic fluid satisfying linear equation of state in Rastall gravity. Using dynamical system approach, we find the fixed points of the system and study their stability. We further explore the thermodynamic aspects at the apparent horizon by investigating the validity of generalized second law of thermodynamics with equilibrium description.


Author(s):  
Rong-Gen Cai ◽  
Gansukh Tumurtushaa ◽  
Yun-Long Zhang

As an approximation to the near horizon regime of black holes, the Rindler fluid was proposed on an accelerating cutoff surface in the flat spacetime. The concept of the Rindler fluid was then generalized into a flat bulk with the cutoff surface of the induced de Sitter and FRW universe, such that an effective description of dark fluid in the accelerating universe can be investigated.


Author(s):  
L. Marchetti ◽  
D. Oriti

We analyze the size and evolution of quantum fluctuations of cosmologically relevant geometric observables, in the context of the effective relational cosmological dynamics of GFT models of quantum gravity. We consider the fluctuations of the matter clock observables, to test the validity of the relational evolution picture itself. Next, we compute quantum fluctuations of the universe volume and of other operators characterizing its evolution (number operator for the fundamental GFT quanta, effective Hamiltonian and scalar field momentum). In particular, we focus on the late (clock) time regime, where the dynamics is compatible with a flat FRW universe, and on the very early phase near the quantum bounce produced by the fundamental quantum gravity dynamics.


Sign in / Sign up

Export Citation Format

Share Document