scholarly journals Existence of equilibrium points and their linear stability in the generalized photogravitational Chermnykh-like problem with power-law profile

2011 ◽  
Vol 337 (1) ◽  
pp. 115-127 ◽  
Author(s):  
Badam Singh Kushvah ◽  
Ram Kishor ◽  
Uday Dolas
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


Author(s):  
A. Jiménez-Casas ◽  
A. Rodríguez-Bernal

We study the linear stability of equilibrium points of a semilinear phase-field model, giving criteria for stability and instability. In the one-dimensional case, we study the distribution of equilibria and also prove the existence of metastable solutions that evolve very slowly in time.


2018 ◽  
Vol 73 ◽  
pp. 06018
Author(s):  
Sutimin ◽  
Khabibah Siti ◽  
Anies Munawwaroh Dita

A model of prey and predator species is discussed to study the effects of the limited prey density and presence of toxicity. The model is studied for sustainable optimal harvesting. The existence of equilibrium points is analyzed to find the stability of coexistence equilibrium, and use Pontryagin’s maximal method to obtain the sustainable optimal harvesting. The results show that the optimal harvesting is obtained from the solution of optimal equilibrium. The toxicity factor decreases the sustainable harvesting.


2020 ◽  
Vol 30 (10) ◽  
pp. 2050155
Author(s):  
Euaggelos E. Zotos

The planar version of the equilateral restricted four-body problem, with three unequal masses, is numerically investigated. By adopting the grid classification method we locate the coordinates, on the plane [Formula: see text], of the points of equilibrium, for all possible values of the masses of the primaries. The linear stability of the libration points is also determined, as a function of the masses. Our analysis indicates that linearly stable points of equilibrium exist only when one of the primaries has a considerably larger mass, with respect to the other two primary bodies, when the triangular configuration of the primaries is also dynamically stable.


Sign in / Sign up

Export Citation Format

Share Document