Analog Simulation of Neutron Evolution in Reactor Dynamics Problems

Atomic Energy ◽  
2021 ◽  
Author(s):  
A. M. Degtyarev
Kerntechnik ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. 160-165 ◽  
Author(s):  
S. Kliem ◽  
A. Gommlich ◽  
A. Grahn ◽  
U. Rohde ◽  
J. Schütze ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Young Hoon Jo ◽  
Seonghyuk Hong ◽  
Seong Yeon Jo ◽  
Yoon Mi Kwon

Abstract Three-dimensional (3D) digital technology is an essential conservation method that complements the traditional restoration technique of cultural artifacts. In this study, 3D scanning, virtual restoration modeling, and 3D printing were used as a noncontact approach for restoring a damaged stone-seated Bodhisattva (stone Buddha statue). First, a 3D model with an average point density of 0.2 mm was created by integrating the fixed high-precision scanning of the exterior and the handheld mid-precision scanning of the interior excavated hole. Using a 3D deterioration map of the stone Buddha statue, the area of the missing parts was measured to be 400.1 cm2 (5.5% of the total area). Moreover, 257.1 cm2 (64.2% of the missing part area) of four parts, including the head, surrounding area of the Baekho, right ear, and right eye, for which symmetry was applicable for modeling or there could be ascertainable historical evidence for the total missing parts, was selected for restoration. The virtual restoration of the missing parts of the stone Buddha statue was performed using a haptic modeling system in the following order. First, the location of the three fragments detached from the head was determined. Next, a reference model was selected, and its symmetrization and modification with respect to the original model were conducted. Further, estimation modeling and outer shape description were achieved through historical research and consultation with experts. The heuristic-based assembly suitability of the created virtual restoration model (461 cm3) was verified by design mockup printing and digital–analog simulation. In particular, to address assembly interference, the interface surface was modified and reprocessed several times. Accordingly, the volume of the final design mockup decreased by 5.2% (437 cm3). Photopolymerization 3D printing technology was used for the actual restoration of the stone Buddha statue, and considering the surface roughness, the layer thickness of the material used for restoration was set at 0.10 mm. Finally, the surface of the printed output was colored to prevent yellowing and joined to the missing parts of the stone Buddha statue. This study presents a remarkable case of shifting from the traditional manual-contact method to the contactless digital method for restoring artifacts and is expected to largely contribute to increasing the usability of digital technologies in the restoration of cultural artifacts.


2021 ◽  
Vol 160 ◽  
pp. 108370
Author(s):  
Alexander M. Wheeler ◽  
Ondřej Chvála ◽  
Steven Skutnik

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


2021 ◽  
Vol 180 ◽  
pp. 58-65
Author(s):  
V.B. Betelin ◽  
B.V. Kryzhanovsky ◽  
N.N. Smirnov ◽  
V.F. Nikitin ◽  
I.M. Karandashev ◽  
...  

1983 ◽  
Vol PAS-102 (5) ◽  
pp. 1235-1239 ◽  
Author(s):  
Farouk A.A. Zaher ◽  
Ahmed Shobeir

Sign in / Sign up

Export Citation Format

Share Document