Combination of Simple Sequence Repeat, S-Locus Polymorphism and Phenotypic Data for Identification of Tunisian Plum Species (Prunus spp.)

2019 ◽  
Vol 57 (5) ◽  
pp. 673-694 ◽  
Author(s):  
Ghada Baraket ◽  
Donia Abdallah ◽  
Sana Ben Mustapha ◽  
Hend Ben Tamarzizt ◽  
Amel Salhi-Hannachi
2016 ◽  
Vol 55 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Júlia Halász ◽  
Noémi Makovics-Zsohár ◽  
Ferenc Szőke ◽  
Sezai Ercisli ◽  
Attila Hegedűs

HortScience ◽  
2014 ◽  
Vol 49 (3) ◽  
pp. 250-253 ◽  
Author(s):  
Colton Ives ◽  
Vidyasagar R. Sathuvalli ◽  
Brooke C. Colburn ◽  
Shawn A. Mehlenbacher

Pollen–stigma incompatibility in european hazelnut (Corylus avellana L.) is of the sporophytic type and under the control of a single locus with multiple alleles (haplotypes). The S-locus was previously assigned to linkage group 5 (LG5) and linked DNA markers were identified. The loci that control leaf color and style color are linked to the S-locus. We investigated segregation for leaf and style color and S-alleles in two progenies, mapped the loci, and compared the two new maps with the LG5 reference map using simple sequence repeat (SSR) markers. Segregation for color, S-alleles and SSR markers fit expectations. The color loci and the S-locus mapped to LG5 between SSR markers B028 and B774. The three maps aligned and the SSR markers were collinear. The SSR markers closest to the S-locus are KG819, KG847, and BR259. In progeny 05050, which segregated for style and leaf color, no recombination was observed between the two traits. Recombination between the S-locus and the style color locus was 5.4 cM in progeny 05050 and 10.1 cM in progeny 00064. The style color locus was placed very close to SSR marker B028 in both progenies. On the reference map, random amplified polymorphic DNA (RAPD) markers 564-500M, 345-1050dF, and 204-950dF and intersequence simple sequence repeat (ISSR) marker 815-540dF are very close to the S-locus. The identification of closely linked markers will facilitate the map-based cloning of the S-locus and color loci in hazelnut.


Author(s):  
M. Faville ◽  
B. Barrett ◽  
A. Griffiths ◽  
M. Schreiber ◽  
C. Mercer ◽  
...  

Accelerated improvement of two cornerstones of New Zealand's pastoral industries, per ennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.), may be realised through the application of markerassisted selection (MAS) strategies to enhance traditional plant breeding programmes. Genome maps constructed using molecular markers represent the enabling technology for such strategies and we have assembled maps for each species using EST-SSR markers - simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs) representing genes. A comprehensive map of the white clover genome has been completed, with 464 EST-SSR and genomic SSR marker loci spanning 1125 cM in total, distributed across 16 linkage groups. These have been further classified into eight pairs of linkage groups, representing contributions from the diploid progenitors of this tetraploid species. In perennial ryegrass a genome map based exclusively on EST-SSR loci was constructed, with 130 loci currently mapped to seven linkage groups and covering a distance of 391 cM. This map continues to be expanded with the addition of ESTSSR loci, and markers are being concurrently transferred to other populations segregating for economically significant traits. We have initiated gene discovery through quantitative trait locus (QTL) analysis in both species, and the efficacy of the white clover map for this purpose was demonstrated with the initial identification of multiple QTL controlling seed yield and seedling vigour. One QTL on linkage group D2 accounts for 25.9% of the genetic variation for seed yield, and a putative QTL accounting for 12.7% of the genetic variation for seedling vigour was detected on linkage group E1. The application of MAS to forage breeding based on recurrent selection is discussed. Keywords: genome map, marker-assisted selection, perennial ryegrass, QTL, quantitative trait locus, SSR, simple sequence repeat, white clover


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Huifang Cao ◽  
Qiang Lin ◽  
Peiwang Li ◽  
Jingzhen Chen ◽  
Changzhu Li ◽  
...  

2009 ◽  
Vol 35 (5) ◽  
pp. 958-961
Author(s):  
Ji-Hua TANG ◽  
Xi-Qing MA ◽  
Wen-Tao TENG ◽  
Jian-Bing YAN ◽  
Jing-Rui DAI ◽  
...  

Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1997-2005 ◽  
Author(s):  
L Ramsay ◽  
M Macaulay ◽  
S degli Ivanissevich ◽  
K MacLean ◽  
L Cardle ◽  
...  

AbstractA total of 568 new simple sequence repeat (SSR)-based markers for barley have been developed from a combination of database sequences and small insert genomic libraries enriched for a range of short simple sequence repeats. Analysis of the SSRs on 16 barley cultivars revealed variable levels of informativeness but no obvious correlation was found with SSR repeat length, motif type, or map position. Of the 568 SSRs developed, 242 were genetically mapped, 216 with 37 previously published SSRs in a single doubled-haploid population derived from the F1 of an interspecific cross between the cultivar Lina and Hordeum spontaneum Canada Park and 26 SSRs in two other mapping populations. A total of 27 SSRs amplified multiple loci. Centromeric clustering of markers was observed in the main mapping population; however, the clustering severity was reduced in intraspecific crosses, supporting the notion that the observed marker distribution was largely a genetical effect. The mapped SSRs provide a framework for rapidly assigning chromosomal designations and polarity in future mapping programs in barley and a convenient alternative to RFLP for aligning information derived from different populations. A list of the 242 primer pairs that amplify mapped SSRs from total barley genomic DNA is presented.


Sign in / Sign up

Export Citation Format

Share Document