doubled haploid population
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 30)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jiaojiao Ren ◽  
Penghao Wu ◽  
Gordon M. Huestis ◽  
Ao Zhang ◽  
Jingtao Qu ◽  
...  

Abstract Tar spot complex (TSC) is a major foliar disease of maize in many Central and Latin American countries and leads to severe yield loss. To dissect the genetic architecture of TSC resistance, a genome-wide association study (GWAS) panel and a bi-parental doubled haploid population were used for GWAS and selective genotyping analysis, respectively. A total of 115 SNPs in bin 8.03 were detected by GWAS and three QTL in bins 6.05, 6.07, and 8.03 were detected by selective genotyping. The major QTL qRtsc8-1 located in bin 8.03 was detected by both analyses, it explained 14.97% of the phenotypic variance. To fine-map qRtsc8-1, the recombinant-derived progeny test was implemented. Recombinations in each generation were backcrossed, and the backcross progenies were genotyped with Kompetitive Allele Specific PCR (KASP) markers and phenotyped for TSC resistance individually. The significant tests for comparing the TSC resistance between the two classes of progenies with and without resistant alleles were used for fine-mapping. In BC5 generation, qRtsc8-1 was fine mapped in an interval of ~721 kb flanked by markers of KASP81160138 and KASP81881276. In this interval, the candidate genes GRMZM2G063511 and GRMZM2G073884 were identified, which encode an integral membrane protein-like and a leucine-rich repeat receptor-like protein kinase, respectively. Both genes are involved in maize disease resistance responses. Two production markers KASP81160138 and KASP81160155 were verified in 471 breeding lines. This study provides valuable information for cloning the resistance gene, it will also facilitate the routine implementation of marker-assisted selection in the breeding pipeline for improving TSC resistance.


2021 ◽  
Author(s):  
Yaswant Kumar Pankaj ◽  
Rajeev Kumar ◽  
Lalit Pal ◽  
Ragupati Nagarajan ◽  
Kulvinder Singh Gill ◽  
...  

Abstract India, the second most populated country and the largest wheat producer worldwide, is vulnerable to global warming especially heat stress. In the present investigation, the doubled haploid population derived from PBW343/IC252478 cross was characterized for various phenotypic and morpho-physiological traits and subjected to stability analysis under heat stress conditions. These lines were planted on a single location i.e., Agricultural farm of Rajendra Prasad Central Agricultural University, India for two successive seasons 2017/2018 and, 2018/2019 under three different sowing dates (Controlled or timely, late and, very late sown conditions). Here, the location preferred for this study was because it represents a hotspot for wheat production and the major constraint for the wheat grower is inclining heat stress. The alpha lattice design was used for the current investigation with three replicates. The overall objective of this study was to identify the ideal double haploid lines for heat-stressed conditions. The results revealed that heat stress had a significant adverse impact on all considered traits contributed to overall yield losses of about 50%. Stability measurements, and genotype × environment interaction (GGE), were useful tools to determine the ideal lines for late sowing (heat stressed condition) and very late sowing condition (terminal heat stress). Therefore, in the ranking of genotypes for both mean yield and stability performance across the six environments, DH 71, DH 150, DH 64, DH 138, DH 98, DH 84, DH 62, DH 104, DH 74, DH 3, DH 104, DH 107 & DH 156 were ranked closest to ideal genotype, these were highly adapted, most stable, heat tolerant and high yielding lines indicating them as the most desirable genotypes out of 167 lines studied. Hence, the physiological traits SPAD index (Soil plant analysis development) and Canopy temperature (CT) can be used effectively to screen out the line for heat tolerance. In addition, the stable wheat genotypes identified could be used in the future wheat breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aakanksha ◽  
Satish Kumar Yadava ◽  
Bal Govind Yadav ◽  
Vibha Gupta ◽  
Arundhati Mukhopadhyay ◽  
...  

The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1369
Author(s):  
Dan-Dan Zhao ◽  
Ju-Hyeong Son ◽  
Muhammad Farooq ◽  
Kyung-Min Kim

Internode length and stem diameter are the primary traits affecting the lodging resistance of rice. Traits related to the length of the panicle (LP), uppermost internode (LUI), second internode (LSI), third internode (LTI), fourth internode (LFI), lowest internode (LLI) as well as stem diameter at the uppermost internode (SDUI), second internode (SDSI), third internode (SDTI), fourth internode (SDFI), and lowest internode (SDLI) in 120 Cheongcheong/Nagdong doubled haploid population were investigated using a quantitative trait locus (QTL) analysis. Thirty-four QTL regions affected LP and the length of each internode. Twenty-six QTL regions were associated with the stem diameter of each internode. RM12285-RM212 on chromosome 1 contained 10 QTLs related to the internode length, which have overlapped for over 2 years. Twenty-three candidate genes were screened using mark interval. Among the candidate genes, Os01g0803900, named OsCYPq1, which is in the Cytochrome P450 family, might be involved in gibberellins (GA) synthesis. GA is an essential plant growth regulator that affects plant height. OsCYPq1 catalyzes oxidation steps in the middle part of the GA pathway. OsCYPq1 is expected to provide valuable information to improve the marker assessment for target traits and QTL gene cloning in rice.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 745
Author(s):  
Youngho Kwon ◽  
Nkulu Rolly Kabange ◽  
Ji-Yun Lee ◽  
So-Myeong Lee ◽  
Jin-Kyung Cha ◽  
...  

Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhansheng Li ◽  
Yumei Liu ◽  
Suxia Yuan ◽  
Fengqing Han ◽  
Zhiyuan Fang ◽  
...  

AbstractGlucoraphanin is a major secondary metabolite found inBrassicaceaevegetables, especially broccoli, and its degradation product sulforaphane plays an essential role in anticancer. The fine mapping of sulforaphane metabolism quantitative trait loci (QTLs) in broccoli florets is necessary for future marker-assisted selection strategies. In this study, we utilized a doubled haploid population consisting of 176 lines derived from two inbred lines (86,101 and 90,196) with significant differences in sulforaphane content, coupled with extensive genotypic and phenotypic data from two independent environments. A linkage map consisting of 438 simple sequence repeats markers was constructed, covering a length of 1168.26 cM. A total of 18 QTLs for sulforaphane metabolism in broccoli florets were detected, 10 were detected in 2017, and the other 8 were detected in 2018. The LOD values of all QTLs ranged from 3.06 to 14.47, explaining 1.74–7.03% of the biochemical variation between two years. Finally, 6 QTLs (qSF-C3-1,qSF-C3-2,qSF-C3-3,qSF-C3-5,qSF-C3-6andqSF-C7) were stably detected in more than one environment, each accounting for 4.54–7.03% of the phenotypic variation explained (PVE) and a total of 30.88–34.86% of PVE. Our study provides new insights into sulforaphane metabolism in broccoli florets and marker-assisted selection breeding inBrassica oleraceacrops.


Crop Science ◽  
2021 ◽  
Author(s):  
Francisco J. Piñera‐Chavez ◽  
Peter M. Berry ◽  
Michael J. Foulkes ◽  
Sivakumar Sukumaran ◽  
Matthew P. Reynolds

Sign in / Sign up

Export Citation Format

Share Document