Electrochemical characteristics of a gold nanoparticle-modified controlled enzyme–electrode contact junction electrode

Author(s):  
Saki Mori ◽  
Yohei Kitta ◽  
Hiroaki Sakamoto ◽  
Eiichiro Takamura ◽  
Shin-ichiro Suye
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinzhong Song ◽  
Tianshu Zhou ◽  
Zhonggang Liang ◽  
Ruoxi Liu ◽  
Jianping Guo ◽  
...  

Based on one simulated skin-electrode electrochemical interface, some electrochemical characteristics based on skin-electrode contact pressure (SECP) for dry biomedical electrodes were analysed and applied in this research. First, 14 electrochemical characteristics including 2 static impedance (SI) characteristics, 11 alternating current impedance (ACI) characteristics and one polarization voltage (PV), and 4 SECP characteristics were extracted in one electrochemical evaluation platform, and their correlation trends were statistically analysed. Second, dry biomedical electrode samples developed by the company and the laboratory, including textile electrodes, Apple watch, AMAZFIT rice health bracelet 1S, and stainless steel electrodes, were placed horizontally and vertically on the “skin” surface of the electrochemical evaluation platform, whose polarization voltages were quantitatively analysed. Third, electrocardiogram (ECG) collection circuits based on an impedance transformation (IT) circuit for textile electrodes were designed, and a wearable ECG acquisition device was designed, which could obtain complete ECG signals. Experimental results showed SECP characteristics for dry electrodes had good correlations with static impedance and ACI characteristics and the better correlation values among 2-10 Hz. In addition, polarization voltages in vertical state were smaller in horizontal state for dry biomedical electrodes, and polarization voltage of electrode pair (PVEP) values for Apple watch bottom was always smaller than ones for Apple watch crown and LMF-2 textile electrode. And the skin-electrode contact impedance of IT textile electrodes was less than the traditional textile electrodes.


2011 ◽  
Vol 14 (3) ◽  
pp. 183-189
Author(s):  
Yong-Ping Dong ◽  
Qian-Feng Zhang ◽  
Taike Duan

A gold nanoparticle/carbon nanotube composite modified glassy carbon electrode was fabricated and used to investigate electrochemical characteristics of hydroquinone, catechol, and resorcinol via cyclic voltammetric analysis under neutral pH conditions. The results imply that the gold nanoparticle/carbon nanotbue modified electrode exhibited a synergistic and excellent electrocatalytic effect of gold nanoparticles and carbon nanotube on the redox behaviors of benzenediols. The reversibility of electrochemical reaction was improved greatly and the peak currents were increased significantly compared with a bare electrode. Good linear relationships were obtained between the oxidation peak currents and the concentrations of catechol and resorcinol. The electrochemical process of catechol was controlled by surface adsorption process, while that of resorcinol was controlled by diffusion process. However, the peak current and the concentration of hydroquinone were not proportional in the whole concentration range, which is because the controlling process of electrochemical reactions was different in the different hydroquinone concentration. Benzenediols could be detected simultaneously at the modified electrode but not at the bare electrode. The stability of the modified electrode was excellent in the benzenediols solutions, which made it possible for the practical application of the modified electrode.


2020 ◽  
Vol E103.C (2) ◽  
pp. 62-65
Author(s):  
Yoshinao MIZUGAKI ◽  
Makoto MORIBAYASHI ◽  
Tomoki YAGAI ◽  
Masataka MORIYA ◽  
Hiroshi SHIMADA ◽  
...  

2013 ◽  
Vol 28 (12) ◽  
pp. 1291-1295 ◽  
Author(s):  
Ling LIU ◽  
Zhong-Zhi YUAN ◽  
Cai-Xia QIU ◽  
Si-Jie Cheng ◽  
Jin-Cheng LIU

Sign in / Sign up

Export Citation Format

Share Document